Mineralization Styles and Alteration Paragenesis of Metasomatic Zones in the Highly Fractionated Granite of Gabal Gattar, Northern Eastern Desert, Egypt

Amr A. Abdel Hamid, Hicham M. Abdel Hamid, Seddik H. Seddik and Mohamed Metwally

Nuclear Materials Authority, P.O. 530 El-Maadi, Cairo, Egypt

Received: 05 August 2023 Accepted: 10 Sept. 2023 Published: 20 Sept. 2023

ABSTRACT
The Gattar-II uranium occurrence is one of the major seven granite-related uranium localities in Gabal Gattar area, northern Eastern Desert of Egypt. It is the most significant occurrence in the area, where many uranium showing were delineated within a metasomatized granitic body, accompanied by many alteration features. This occurrence was selected in this study with the aim to determine the geological, structural and mineralogical characteristics of the uranium mineralization related to metasomatized rocks and construct a paragenetic sequence for the alteration assemblage. The granite at this locality is alkali feldspar granite that belongs to uranium-bearing granite with highly evolved characteristics. The richest uranium ore bodies are distributed along a nearly E–W striking shear zone that transected by mineralized NS, NNE to NE and NW trending fractures. A metasomatic zone is developed along intersections of these fractures with the major shear zone. The uranium mineralization, predominantly, consisting of uranophane with lesser amounts of pitchblende. Mineralogical and petrographical observations for mineralized samples from G-II suggested at least three stages for alteration and uranium minerals generation in the granite. The earliest pre-ore stage is characterized by partial to complete chloritization of biotite and precipitation of calcite in vugs as well as partial dissolution of primary quartz. This stage is followed by main ore stage, which characterized by local crystallization of pitchblende-pyrite-magnetite assemblage and accumulation of uranophane-fluorite-calcite mineral phases. The last stage of alteration is marked by limited alteration of magnetite to hematite and limonite as well as kaolinitization and precipitation of Mn-oxides.

Keywords: Gattar granite, Alteration paragenesis, Metasomatism, Uranium mineralization, Fluorite.

1. Introduction
The uranium mineralization of Gabal Gattar area was explored by the Egyptian Nuclear Materials Authority (NMA) during a ground radiometric survey and follow-up of anomalies in the northern parts of the Gattar batholith. Following this exploration, many researchers have contributed to geological knowledge of this area. Previous studies focused principally on the geology and structures of the ore bodies were described in details by many authors (e.g. Shalaby, 1990, 1995 and 1996; Roz, 1994; Abu Zied, 1995; Haridy, 1995; Abdel Hamid, 2006; El Sundoly and Waheeb, 2015; El Kholy et al., 2019). Contributions to mineralogy and geochemistry of the uranium mineralization have been completed by Mahdy et al., (1990), Sayyah and Attawiya (1990), Khazback et al., (1995), Khalaf (1995), Mahdy (1999), El Kammar et al., (2001), Dawood (2003), Abdel El Hamid (2006), Raslan (2009), Mahdy (2014) and Mahdy et al., (2015).

The uranium ore bodies are hosted by Gabal Gattar granite at its northern peripheries. There, the oldest Hammamat sediments show sharp contact with this granite and host a perigranitic uranium occurrence (Gattar-V occurrence). The other uranium localities are related to the granite itself. The prospect was subjected to small and large scale mining for uranium, including different shapes of excavations such as tunnels, open pits and surface trenches. The most significant uranium ore bodies occur in Gattar-II (G-II) uranium occurrence that was selected in this study. It constitutes one of the
major seven granite-related uranium occurrences in the area. G-II contains metasomatized granitic ore body, which display different shapes of wall-rock alteration features. The aim of this paper is to represent the results of studies dealing with geology, petrography and mineralogy of metasomatic zones from this locality. Mineral composition and microscopic texture of selected samples are described with the aim to determine the paragenetic sequence of the alteration product.

2. Geological Background
2.1. Regional Geological Setting
The Gattar batholith locates in the northern part of the northern Eastern Desert of Egypt (Fig. 1a), 40km west of Hurghada city (latitudes 26°51'25"N 27°8'52"N and longitudes 33°13'00"E, 33°25'59"E). It is surrounded by metavolcanics, orogenic older granitoids and the Hammamat sediments of molasse type (Fig. 1b). It shows sharp intrusive contacts against these older rocks. The metavolcanics are exposed in the center of the batholith as roof pendants over the Gattar granites at Gabal Kehla. They are consisting of metabasalts and metadolerites (Abu Zied, 1995). The orogenic older granitoids are surrounded the batholith as low to moderated outcrops and contain diorite, quartz diorite and granodiorite (Roz, 1994). The Hammamat sediments are covering the northern regions of Gabal Gattar area. They are forming the southern extension of Gabal Um Tawat. These rocks comprise greenish and brownish siltstone and greywack interbedded with minor conglomerate (Holail and Moghazi, 1998).

Fig. 1: Geological map showing the lithotectonic units of Gabal Gattar area, northern Eastern Desert, Egypt.

The Gattar batholith granitic rocks are equivalent to younger granites and post orogenic plutonites of Egypt (El Ramly and Akaad, 1960; Akaad and Noweir, 1969&1980). They form series of highly elevated mountains with sharp rugged peaks and steep walls. These granites are generally medium-grained, ranging in color from light pink to red or become reddish brown along fault zones as a result of alterations. They are transected by numerous faults and fractures trending mainly to the NNE and
NW directions. There, these rocks become highly hematized and silicified. Along the fault zones and contacts, the granite shows signs of strong crushing and mylonitization and nearly displaced by NNW faults. Numerous basic dikes of variable attitudes, dimensions and compositions are penetrating the Gattar batholith trending NS, NE and ENE, while acidic dikes are seen cut only the oldest rocks.

2.2. Local Geology of G-II Occurrence

The northern segment of Gabal Gattar area contains many uranium showings of lensoid ore bodies grouped into seven uranium occurrences (Gattar-I to Gattar-VII), extending over some few kilometers along the northern faults (Fig. 2). They are predominantly localized in the highly fractionated alkali feldspar granite of the northern peripheries of the Gattar batholith and are also encountered along the contacts with the Hammamat sediments in G-V occurrence. These ore bodies are controlled by tectonic structures mostly represented by strike-slip faults and shear zones along which hydrothermal alteration is developed.

![Geological map of the northern region of Gabal Gattar area illustrates the locations of the seven uranium occurrences.](image)

The granite at G-II occurrence is a perthitic granite of late Proterozoic age, with their associated basic dikes and quartz veins. It forms triangular granitic block with high relief and sharp rugged peak (Fig. 3). This granite is highly sheared and dissected by numerous faults and fractures. It is medium-grained and range in color from pink or slightly red to dark or reddish brown depends mainly on the type of alteration. Various types of post-magmatic alterations are widespread around the uranium mineralization. This granite is dissected by numerous quartz veins and veinlets as well as basic dikes. The mining activity in G-II uranium occurrence includes two tunnels, mine shaft, small trenches and large open pit with different dimensions and heights. They cover the eastern and western sides of the occurrence and located entirely in a major E-W highly radioactive and altered zone (Fig. 4).
2.3. Mineralization Styles and Alteration Features

The uranium mineralized bodies of G-II occurrence found as discontinuous lenses grouped into two zones extending over some hundreds of meters in the granite. The uranium minerals include uranophane with its beta modification and local crystallization of pitchblende (Fig. 5a & b). Pitchblende
was documented inside the western tunnel of the studied occurrence (Shahin, 2014). It is amorphous in shape, dense and black in color and occurs as patches. Other metals such as pyrite and magnetite are also enriched in this altered domain. Generally, the wall-rock alterations in this locality mainly include silicification, fluoritization, carbonatization, kaolinitization and hematitization. Each type of these alterations can be seen individually or may associates with the other alteration phases. Silicification is commonly represented by quartz veins and veinlets intersected the granite as well as filling pore spaces between major minerals in mineralized samples (Figs. 5c&d). The silicification process is mainly resulting from strong acidic hydrothermal solutions with temperature ranging between 300°C and 400°C (Burnham, 1962).

Fluoritization is usually found in the center of the ore bodies, forming the fluorite-type ore in the eastern sector of G-II occurrence. It is predominantly forms abundant veins cross-cutting the rock or as discrete grains filling cavities in the mineralized granite (Figs. 6a &b). The development of the fluorite veining displays a close spatial association with the mineralized fractures. Hematitization is usually shown with the uranium mineralization (Fig. 6c), forming one of the main wall-rock alterations in Gabal Gattar area. It is known that hematitization is caused by the redox reaction between oxidized uranium bearing fluid and reduced component of host rocks (Rich et al., 1977; Langmuir, 1978). However, not all hematitized rocks in G-II occurrence are mineralized (Fig. 6d). The initial hematitization is generally barren, and locally gives the granite a distinctive brick-red coloration. The hematitic alteration and associated mineralizations are overprinted by kaolinitic alteration, which is, in turn, locally overprinted by Mn-oxides. The Mn-oxides are pervasive in the barren and mineralized granite. Some samples of the less altered granite are seen stained by manganese dendrites (Fig. 7a) or in some cases filling the microfractures of the rock (Fig. 7b). Alteration of biotite to chlorite is usually observed in the barren granite. The intensity of this process is increased in the highly deformed and mineralized granite and may occur as fracture-filling besides kaolinite (Fig. 7c). Epidotization is registered also in the mineralized samples (Fig. 7d).

![Photographs of mineralization and metasomatic alterations in G-II occurrence](image)

Fig. 5: Photographs of mineralization and metasomatic alterations in G-II occurrence, (a) Uranophane, (b) Patches of pitchblende, (c) Displaced quartz veins, and (d) Quartz filling cavities and associates spotty uranophane. U: uranophane, Pitch: pitchblende, Qz: quartz.
Fig. 6: Photographs of the mineralization and associated alterations in G-II occurrence, (a) Veinlets of violet and dark violet fluorite, (b) Discrete crystals of fluorite associates uranophane, (c) Hematite associates uranophane, and (d) Completely hematitized barren granite. U: uranophane Fl: fluorite.

Fig. 7: Photographs of the wall-rock alterations in G-II occurrence, (a) Manganese dendrites (Mn) staining the rock surface, (b) Fracture-filling Mn-oxides, (c) Chlorite (Chl) is filling microfracture of the granite accompanying kaolinite, and (d) Epidote associates uranophane (U) and hematite. Mn: manganese oxides, Chl: chlorite, Epi: epidote, U: uranophane.
2.4. Structural Control of Mineralization

The localization of uranium mineralization along the fault and fracture zones is a characteristic attribute of Gabal Gattar uranium prospect. The structural studies on the uranium ore bodies from Gattar area were pointed out in almost all publications by the researchers from the Nuclear Materials Authority of Egypt and others (e.g. El Rakaiby and Shalaby, 1988; Shalaby, 1990, 1995, 1996; Roz, 1994; Abu Zied, 1995; Hariedy, 1995; El Kholy, 2012; El Sundoly and Waheeb, 2015; El Kholy et al., 2019). It is clear that the most important factor controlling the deposition of uranium in this district is the occurrence of large tectonic zones, which became the paths of circulation and discharge of uranium-bearing hydrothermal solutions in the northern zones of Gattar batholith. G-II uranium occurrence is bounded by two shear zones (Fig. 8). The first shear zone is striking N12°E that represents the east extension of G-VI shear, while the second one is trending N55°W that bound the mass from the east. Inside the granitic body, the uranium mineralization is controlled by earlier E-W shear zone that was transected later by smaller NS, NE to NNE and NNW strike-slip faults. Intersections of these trends are usually display extensive alterations and mineralization. In some cases, the fault zone is filled by breccia (Fig. 9a) or the granite itself is being brecciated, where many alteration types are developed. The brecciated granite is always filled by hematite between its grains (Fig. 9b).

![Fig. 8: Structural map of G-II uranium occurrence.](image-url)
3. Sampling and Methods

Less altered granite and its corresponding hydrothermally altered varieties were sampled from outcrops, underground tunnels and surface trenches as well as open pit, which were constructed by the NMA. Samples were selected from the less altered granite, through the ore bodies and metasomatic zones. Thin sections were prepared and petrographic studies were investigated using optical microscope and scanning electron microscope (model Philips XL 30) at the NMA.

4. Results

4.1. Petrography and mineralogy of alteration assemblage

The granite at G-II occurrence was affected by many alteration features nearly close to the formation of uranium mineralization. Petrographic examination of selected samples from this altered granite, demonstrates the complexity and intergrowth of the various alteration phases in the rock. The alteration paragenesis was determined based on optical microscopy and SEM observations (Table 1). The microscopic studies indicated that the mutual texture, structural relations and replacement features are important during determination of the sequence of alteration.

4.1.1. Initial granite and pre-ore alteration

The initial granite shows petrographic features of perthitic leucogranite. It is medium-grained, hypidiomorphic-granular, and dominated by K-feldspar (perthite) and quartz, with minor plagioclase and biotite, as well as alteration product of white mica. The accessory minerals include zircon, apatite, fluorite and magnetite. Biotite occurs as aggregates intergrown with fluorite and is strongly pleochroic from yellow-brown to blue-green. Along fault zones, this granite is altered and reddened. Here, plagioclase is sericitized (Fig. 10a), quartz is recrystallized (Fig. 10b) and biotite is partly replaced by chlorite (Figs 10c). Calcite also occurs in the less altered granite and filling vugs between the major minerals (Fig. 10d). Zircon is metamicted and muscovite found as replacement of K-feldspar (Fig. 10e).

4.1.2. Main-ore stage

At this stage, the uranium minerals are precipitated from the hydrothermal fluids accompanied many complex alteration features. Pitchblende is formed along fault zone in highly altered and brecciated granite in the western sector of G-II occurrence. In contrary, uranophane is widespread in the eastern side of G-II occurrence in the open pit. The mineralized rock is ranging from slightly to moderately and highly altered.
Table 1: Mineral paragenesis of alteration assemblage in G-II metasomatized granite established based on optical and scanning electron microscopes.

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Initial granite</th>
<th>Pre-ore alteration</th>
<th>Main ore stage</th>
<th>Oxidation stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pitchblende-pyrite assemblage</td>
<td>Uranophane-fluorite-calcite assemblage</td>
</tr>
<tr>
<td></td>
<td>Early</td>
<td>Late</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-feldspar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magmatic quartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagioclase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biotite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zircon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apatite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscovite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidote</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sericite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary quartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitchblende</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranophane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaolinite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limonite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn-oxides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The widths of lines indicate relative abundances of minerals.

4.1.2.1. Pitchblende-pyrite assemblage

These patchy zones of radioactivity consist of a complex intergrowth of pitchblende-pyrite-magnetite mineral phases. Calcite and hematite are also seen with this assemblage. Pitchblende is locally observed as patches interstitial of the major minerals or filling the cracks of the rock (Fig. 11a). ESEM image and element map of pitchblende are shown in Figs. (11b&c). EDX analysis of pitchblende is illustrated in Figs. (11d&e). In addition, some pitchblende occurs near pyrite that occurs as discrete euhedral to subhedral crystals disseminated in the rock. Representative ESEM image and its corresponding EDX analysis of pyrite grain are shown in Fig. (12a). In some instances, pitchblende is surrounded and/or overprinted by uranophane. In areas surrounding the mineralization, the granite shows evidence of brittle deformation in the form of microscopic brittle fracturing and associated cataclasism. These zones of increasing permeability are invaded by the mineralizing fluids, but not all zones of brecciation and hematite alteration carry uranium mineralization. Locally, fractures filled with calcite crosscut the mineralized hematite-filled fractures and associated with brecciation (Fig. 12b). In this stage, hematite is prevailing and accompanied by hydrothermal magnetite (Fig.12c).
Fig. 10: Microphotographs describe the mineral composition of initial Gabal Gattar granite and the principle alteration features in the pre-ore stage, (a) Sercitization of plagioclase, (b) Recrystallized quartz, (c) Biotite completely altered to chlorite, (d) Precipitation of carbonates and secondary silica between pore spaces of major minerals, and (e) Metamictization of zircon. Pl: plagioclase, Qz1: magmatic quartz, Qz2: Secondary silica, Chl: chlorite, Cal: calcite, Zrn: zircon, Ms: muscovite.
Fig. 11: Photomicrographs illustrate the mineralogical characteristics of pitchblende, (a) Patches of pitchblende under the transmitted light, (b) ESEM image of the same photo, (c) elemental map of pitchblende, (d), (e) ESEM image and EDX analysis of pitchblende. Pitch: pitchblende, Cal: calcite.

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>1.8</td>
</tr>
<tr>
<td>Si</td>
<td>2.8</td>
</tr>
<tr>
<td>Ca</td>
<td>6.0</td>
</tr>
<tr>
<td>Fe</td>
<td>1.0</td>
</tr>
<tr>
<td>Pb</td>
<td>6.0</td>
</tr>
<tr>
<td>U</td>
<td>82.4</td>
</tr>
</tbody>
</table>
4.1.2.2. Uranophane-fluorite-calcite assemblage

This mineralization assemblage is characterized by the precipitation of disseminated and vug-filling uranium minerals of secondary origin. Uranophane was formed within the secondary pore spaces between major minerals or filled the cracks throughout the minerals. The dissolution of magmatic quartz leaving vugs and uranophane is shown filling these areas (Fig. 13a). ESEM image and its corresponding EDX analysis of uranophane grains are illustrated in Fig. (13b). Large amounts of recrystallized quartz are always associated with uranophane. In some mineralized samples, veinlets of quartz were found crosscutting all existing minerals. They have pinkish gray color with anhedral granular texture and locally display deformation. In this stage, K-feldspar is strongly altered. Abundant fluorite veinlets occur together with calcites are observed in this mineralized stage, which are enclosed by hematitized rock (Fig. 13c). Previous geochemical exploration of these fluorite veins indicated that they enriched with U and REE, which providing evidence that uranophane and fluorite are precipitated together from the same mineralizing solutions (Mahdy, 2014). Dissemination of pale-pink, to orange hematite is observed within the brecciated granite that contains fragments of anhedral to subhedral quartz. This alteration package demonstrates the intensity and duration of hydrothermal activity within the system. Zircon and apatite, which represent the most important accessory minerals in this granite, were subjected to slight changes as a result of hydrothermal reworking.
Fig. 13: Photomicrographs illustrate the uranophane and associated minerals, (a) Uranophane filling the interstitial spaces between common minerals, (b) ESEM image and EDX analysis of uranophane, and (c) Veinlets of violet fluorite associate fracture filling quartz. U: uranophane, Fl: fluorite, Qz: quartz.

4.1.3. Late oxidation stage
The late oxidation stage is possibly corresponding to superficial weathering, which includes restricted alteration of magnetite to hematite and limonite. The first stage of hematitization is manifested by slight reddening of K-feldspar and through the alteration of biotite to chlorite. With intense alterations, hematitization is raised and clearly overprints all the pre-existing minerals. Hematite grains are generally quite small and surround the quartz grains, diking the altered rocks into red color. Kaolinitization are coexisting with hematitization in many granitic samples, while Mn-oxides are overprint all these minerals.

5. Discussion and Conclusions
The chemical alteration of granitic rock in crustal conditions consists of the dissolution of mineral phases which are unstable under the pertinent conditions of temperature and pressure. This first step is usually followed by a stage where both dissolution of parent minerals and precipitation of neogenic phases are concomitant when relevant conditions of super-saturation occur (Seimbille et al., 1998).
Based on our petrographic work and previous researches (e.g., Mahdy, 1999; El Kammar et al., 2001, Dawood, 2003, Abdel El Hamid, 2006; Mahdy et al., 2015), uranium mineralization of G-II occurrence is irregularly distributed in most metasomatic zones but rich ores occur in the most intensively deformed zones. The common types of alterations associated uranium mineralization in the granite are represented by partial dissolution of quartz (desilicification), sericitization of feldspars, chloritization of biotite, muscovitization, carbonization, kaolinitization and hematitization. Newly formed phases such as fluorite, pyrite and magnetite are also encountered in the altered domain. However, all these alterations are of considerable importance for understanding the physicochemical controls of the hydrothermal solutions affecting Gattar granite.

The hydrothermal activity started with an alkaline and oxidizing hot aqueous medium that caused series of subsolidus alterations evidenced by the partial dissolution and precipitation of carbonates. Chemically silica dissolves only in alkaline medium and carbonates require pH between 7.5 and 7.8 (Krauskopf, 1982). The alkaline solutions dissolve primary quartz in the form of carbonates such as calcite, according to the following equations:

$$\text{Solid quartz} + 4\text{NaOH} \rightleftharpoons \text{Na}_4\text{SiO}_4 + 2\text{H}_2\text{O} \quad \text{(1)}$$

These soluble silicates may react with the primary plagioclase to produce albite and secondary silica according to the following equation:-

$$2\text{CaAl}_2\text{Si}_2\text{O}_8 + \text{Na}_4\text{SiO}_4 + 8\text{O}_2 \rightleftharpoons 4\text{NaAlSi}_3\text{O}_8 + 2\text{SiO}_2 + 2\text{Ca}^{2+} \quad \text{(2)}$$

The produced Ca$^{2+}$ ions of reaction (2) together with magnesium liberated due to muscovitization of biotite precursor, precipitate under the prevailing alkaline medium in the form of carbonates such as calcite, according to the following equations:-

$$\text{Ca}^{2+} + \text{CO}_3^{2-} \rightleftharpoons \text{CaCO}_3 \quad \text{(3)}$$
$$\text{Mg}^{2+} + 2\text{CaCO}_3 \rightleftharpoons \text{CaMg(CO}_3)_2 + \text{Ca}^{2+} \quad \text{(4)}$$

The oxidizing alkaline hydrothermal solutions will deteriorate the Fe$^{2+}$ bearing minerals such as biotite, according to the following equation:-

$$\text{KMgFe}_2(\text{AlSi}_3\text{O}_10)(\text{OH})_2 + 2\text{Al(OH)}_3 \rightleftharpoons \text{KA}_2\text{AlSi}_3\text{O}_10(\text{OH})_2 + 2\text{Fe(OH)} + \text{Mg}^{2+} \quad \text{(5)}$$

The produced iron oxide-hydroxide solidifies dehydrate into hematite that impart the altered granite with strong reddish brown hues. Most of the described alteration reactions reduce alkalinity and sudden change in the redox potential of the mineralizing solutions should have taken place upon oxidation of pre-mineralization sulfides (mostly of pyrite). At that stage, other oxidized chemical constituents, including uranium should have been reduced.

The formation of pyrite associated with pitchblende is depending on the abundance of H$_2$S in the hydrothermal system (Egliziaud et al., 2006). H$_2$S can be enriched by the oxidation of the earlier pyrite according to the equations:

$$\text{FeS}_2 + 3\text{H}_2\text{O} \rightarrow \text{Fe}^{3+} + \text{S}_2\text{O}_3^{2-} + 6\text{e}^- + 6\text{H}^+ \quad \text{(6)}$$
$$\text{S}_2\text{O}_3^{2-} + \text{H}_2\text{O} \rightarrow \text{H}_2\text{S} + \text{SO}_2^{2-} \quad \text{(7)}$$

Fe$^{3+}$ and Fe$^{3+}$ will react with H$_2$S to produce iron monosulfide (Hough et al., 2019), while iron monosulfide is one of the direct reactants to produce authigenic pyrite (Yue et al., 2019).
Simultaneously, H$_2$S has a strong reduction capacity for uranyl, creating a strong reducing barrier for uranium precipitation (Liu et al., 2017).

$$4\text{UO}_2^{2+} + \text{H}_2\text{S} + 10\text{OH}^- \rightarrow 4\text{UO}_2^2 + \text{SO}_4^{2-} + 6\text{H}_2\text{O}$$ (10)

The other mineralizing stage is characterized by uranophane as the principal uranium mineral, which represents the secondary uranium mineralization in this occurrence. Uranophane either occurs locally overprinted pitchblende, or in a newly formed set of veins crosscutting hydrothermal fluorite. Uranophane is also associated with a series of alteration and gangue minerals mainly including calcite and fluorite. The mineralizing fluids were carbonate-rich, suggesting that uranium was transported as a uranyl carbonate complex.

Acknowledgements

We are grateful to Prof. Dr. Mohamed Wetait, Prof. Dr. Zakaria Hamimi and Prof. Dr. Afaf Mahdy for providing their great knowledge and experience, which helped the authors to conduct this research. The authors thank Prof. Dr. Hassan El Sundoly, Prof. Dr. Ehab Abu Zeid, Prof. Dr. Adel El Afandy, Prof. Dr. Ahmed Abu Steet, Prof. Dr. Darweesh El Kholy, Prof. Dr. Mohnsen Mohamadien Eng. Yehia Zakaria and Dr. Nasser Mahdy for their guidance and help. Also, authors are very much obliged to Prof. Dr. Ahmed Dardier and Prof. Dr. Hany Shalaby for providing useful advices and corrections.

References

