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ABSTRACT 
In this work, the first and second Gaursat functions for an unbounded plate with two curvilinear holes 

are deduced using the complex variable technique. The two holes in all previous works are 

conformally mapped outside the unit circle. In the presence of an initial heat flow perpendicular to the 

plate, these are conformally mapped into the unit circle. The holes take on a variety of shapes, 

allowing this study to be applied to a wide range of situations, including caves, tunnels, and 

excavations in solids or rocks. The physical meaning of stress components is investigated by 

obtaining and plotting them. The various forms are received using Maple 2019. There are several 

applications that are studied and discussed.  

 
Keywords: Thermoelastic plate, Analytical modeling, curvilinear hole, Complex variable method, 

boundary value problems (BVPs), Gaursat functions, Conformal mapping. 

1. Introduction 
 
The complex plane plays a significant role in illustrating some mysteries phenomena like electricity, 

heat, and magnetic field. Also, it solves many problems in mathematics that can't be in real plane. 

 Muskhelishvili, (1953) was first who use and developed the method of complex function theory. 

Some ideas were demonstrated in books, see (Spiegel, 1964; Rubenfeld, 1985; Bieberbach, 1953). 

Problems with isotropic homogenous cribriform unlimited plate have been investigated in 

(Muskhelishvili, 1953; Sharma, 2014; Abdou & Khamis, 2000; Abdou & Khar-Eldin, 1994; Colton & 

Kress, 1983; Abdou, 2003). 

Consider a unformal heat qy  in the negative y- direction, assuming the increasing of temperature 

  is constant throughout the plate's thickness i.e. ( , )x y   , and the temperature gradient is 
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constant. Because of an insulated curvilinear hole C, heat is distributed uniformly, therefore the heat 

equation must obey the equations. 
2 2

2 2

2 2
0, ,

x y

 
     

 
………………………………….(1.1) 

 

0, .or r
n


 


  ……………………………………………………………………………………(1.2) 

Where n is the normal unit vector of the surface. 

The plane theory of elasticity's main problems is just like finding two analytic functions. ( )z  and 

( )z of one complex argument ,z x iy  these functions, for a point t  on the boundary, satisfy the 

boundary conditions 

1 1 1
( ) ( ) ( ) ( ).K t t t t f t      ……………………………………………………………….(1.3) 

If  1K    and ( )f t  is a given function of stress, it is called the first fundamental BVPs (the stress 

BVPs).  Putting
3

,
(1 2 )(1 )

E
K

 
 

   


  

  
, K is called the thermal conductivity and  

( )f t  is a given function of displacement, we have the second fundamental BVPs (the displacement 

BVPs).  

The complex potential analytic functions 1( )t  and 1( )t  are:  

1
( ) ln ( ),

2 (1 )

x y
S iS

c     
 


    


…………………………………………………..…(1.4) 

and 

1

( )
( ) ln ( ).

2 (1 )

x y
S iS

c      
 




   


…………………………………………………..(1.5) 

Here, ,
x y

S and S  are the vector components of all outer forces acting on the boundary's resulting 

vector components; , and    are complex constants, ( ) 0, ( ) 0.      

The components of stresses are given by, see (Jaha & Abdou, 2011; Abdou & Aseeri, 2009; Bayones 

& Alharbi, 2015). 

2 2

2 2

1
2 2 Re[2 ( ) ( , )] ,

2
xx G z M z z

y x

 
  

    
       

   
………………………………..(1.6) 

2 2

2 2

1
2 2 Re[2 ( ) ( , )] ,

2
yy G z M z z

y x

 
  

   
       

   
  ……………………………..…(1.7) 

and,  
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2

2 Im{ ( , )} ,xy G M z z
x y




 
    

 

……………………………………………………………...(1.8) 

where, ( , ) ( ) ( ).M z z z z z      

 

The rational mapping  

1 2

1 2

1 21 1

1 2

( ) , 0 ,
(1 ) (1 )

m m
z c c c n n

n n

  
 

 

 

 

 
   

 
 ……………………………………….(1.9) 

where ( )z    does not vanish or become infinite inside the unit circle  , has been used. 

Here, we will map the boundary of the given C region bounded by the middle plane of the plate in 

the z plane ( z x iy  ), by using the same rational mapping but the origin lies inside the hole. 

Hence, the conformal mapping used will be modified as 

1 2
1 2

1 2 1 2

1 2

( ) , ( 0 , , ( ; 1).
(1 ) (1 )

m m
z c c c n n n n

n n

  
   

 

  
    

 
…………………………...(1.10) 

Where, 1 2 1 2, , ,m m n n  are real parameters,  

2. Rational mapping 
 

Here, we will compare between the shapes of hole in the following cases 

I. 1 2 1 20, , 0.n or n m m   

Here, the conformal mapping  
1 2

1 2 .
1

m m
z c

n

  



  



 

II. 1 1 2 2 1 20, , , 0, .m n n m n n    

Here, the conformal mapping  
1 2

2

1 2

.
(1 ) (1 )

m
z c

n n

 

 

 


 
 

III. 2 1 2 1 1 20, , , 0, .m n n m n n    

Here, the conformal mapping  
1

1

1 2

.
(1 )(1 )

m
z c

n n

 

 

 


 
 

IV. 1 2 1 20, , 0.n n m m    

Here, the conformal mapping  
1 2

1 2
2

.
(1 )

m m
z c

n

  



  



 

We used the same numbers in all cases, to find how the condition effects on each case.  
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Fig. (2.1). 

1 2 1 2n =0.03, n =0.05,m =0.3,m =0.02. 

 

Fig. (2.1.1).  

 1 2 1 2n =0, n =0.05,m =0.3,m =0.02. 

Fig. (2.1.2).  

 1 2 1 2n =0.03, n =0,m =0.3,m =0.02. 

Fig. (2.1.3).  

 1 2 1 2n =0.03, n =0.05,m =0,m =0.02. 

Fig. (2.1.4).  

 1 2 1 2n =0.03, n =0.05,m =0.3,m =0. 

Fig. (2.1.5).  

 1 2 1 2n =n 0.03,m =0.3,m =0.02. 

Fig. (2.1.6).  

 1 2 1 2n =n 0.05,m =0.3,m =0.02. 
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Fig. (2.2).  

1 2 1 2n =0.1, n =-0.2,m =3,m =0.5. 

 

  
Fig. (2.2.1). 

1 2 1 2n =0, n =-0.2,m =3,m =0.5.  

 
Fig. (2.2.2). 

1 2 1 2n =0.1, n =0,m =3,m =0.5.  

  
Fig. (2.2.3). 

1 2 1 2n =0.1, n =-0.2,m =0,m =0.5.  

 
Fig. (2.2.4). 

1 2 1 2n =0.1, n =-0.2,m =3,m =0.  

  
Fig. (2.2.5). 

1 2 1 2n = n 0.1,m =3,m =0.5. 

  
Fig. (2.2.5). 

1 2 1 2n = n 0.2,m =3,m =0.5.   
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Fig. (2.3) 

1 2 1 2n =0.9, n =0.4,m =-5,m =0.5. 

 
Fig. (2.3.1) 

1 2 1 2n =0, n =0.4,m =-5,m =0.5.  

 
Fig. (2.3.2) 

1 2 1 2n =0.9, n =0,m =-5,m =0.5.  

 
Fig. (2.3.3) 

1 2 1 2n =0.9, n =0.4,m =0,m =0.5.  

  
Fig. (2.3.4) 

1 2 1 2n =0.9, n =0.4,m =-5,m =0.  

  
Fig. (2.3.5) 

1 2 1 2n =n =0.9,m =-5,m =0.5. 

 
Fig. (2.3.6) 

1 2 1 2n =n =0.4,m =-5,m =0.5. 
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Fig. (2.4) 

1 2 1 2n =0.2, n =0.5,m =-1,m =-0.01. 

 

 
Fig. (2.4.1) 

1 2 1 2n =0, n =0.5,m =-1,m =-0.01.  

 
Fig. (2.4.2) 

1 2 1 2n =0.2, n =0,m =-1,m =-0.01.  

 
Fig. (2.4.3) 

1 2 1 2n =0.2, n =0.5,m =0,m =-0.01. 

  
Fig. (2.4.4) 

1 2 1 2n =0.2, n =0.5,m =-1,m =0.  

 
Fig. (2.4.5) 

1 2 1 2n =n =0.2,m =-1,m =-0.01.  

 
Fig. (2.4.6) 

1 2 1 2n =n =0.5,m =-1,m =-0.01.   
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Fig. (2.5) 

1 2 1 2n =0.5, n =0.02,m =2,m =-0.1. 

 

 
Fig. (2.5.1) 

1 2 1 2n =0, n =0.02,m =2,m =-0.1. 

 
Fig. (2.5.2) 

1 2 1 2n =0.5, n =0,m =2,m =-0.1.  

 
Fig. (2.5.3) 

1 2 1 2n =0.5, n =0.02,m =0,m =-0.1. 

 
Fig. (2.5.4) 

1 2 1 2n =0.5, n =0.02,m =2,m =0. 

 
Fig. (2.5.5) 

1 2 1 2n =n =0.5,m =2,m =-0.1. 

  
Fig. (2.5.5) 

1 2 1 2n =n =0.02,m =2,m =-0.1. 
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1. It seems that all figures are similar about x axis .  

2. In Fig. (2.1), the general case is when 1 2 1 2n =0.03, n =0.05,m =0.3,m =0.02 , it is obvious 

that all the special cases are as same as the original one, except in case of 1m =0 . 

3. In Fig. (2.2), 1 2 1 2n =0.1, n =-0.2,m =3,m =0.5 , all cases are different from each other. When 

1n =0 , there is enlargement in y axis only, while when 2n =0 , the enlargement in both 

axes. When 1=0m , the shape of hole is completely changed, while when 2 =0m , there is a 

little reduction in x axis . When 1 1 1 1n =n =0.1& n =n =-0.2 , the two figures are almost the 

same but inverse to each other. 

4. In Fig. (2.3), the general case is when 1 2 1 2n =0.9, n =0.4,m =-5,m =0.5, in case of 

1 2n =0&n =0, the shape of holes is changed and there is a big reduction in figs. (2.3.1) - 

(2.3.2). when 2m =0 , it is like as same as Fig. (2.3), but when 1m =0 , there is reduction in 

area keeping the same shape of general case. When 1 2n =n =0.9 , a big enlargement in the 

area of holes occurred, while when 1 2n =n =0.4 , there is a singularity point.  

5. In Fig. (2.4), the general case is when 1 2 1 2n =0.2, n =0.5,m =-1,m =-0.01. When 1n =0 , the 

shape of hole is somewhat like the original one, while when 2n =0 , it is completely changed. 

when 1m =0 , there is a singularity point, while when 2m =0, the shape of hole is identical as 

the general one. When 1 2n =n =0.2 ,the shape of holes is completely changed, in the other 

hand when 1 2n =n =0.5, there is a singularity point.  

6. In Fig. (2.5), the general case is when 1 2 1 2n =0.5, n =0.02,m =2,m =-0.1in case of 

1 1 2n =0&n =n =0.02 , the shape of hole is somewhat like circle, when 2 2n =0&m =0 , the 

shape of hole is as same as the general one, when 1 1 2m =0&n =n =0.5 , the shape of hole is 

completely changed. 
7. The Figs. (2.3.6), (2.4.3) and (2.4.6) have singularity points and this are in valid figures. 

 

3. Gaursat functions (analytic potential complex functions) : 

After using the conformal mapping (1.10), we can write the function 
1

( )

( )

 

  
 as, 

1

1

( )
( ) ( ),

( )

 
   

 



 


…………………………………………………………………..……..(3.1)                                                               

1 2 2 2 2

1 2 1 2

1 2 3 2

1 2 1 2 1 1 1 2 1 2

( ) ,
1

( )(1 ) (1 )
, 1,2.

(1 )[ (2 ) (1 ) (1 2 ) 3 ]

j j

j

j j j j

j

j j j j j j j

h n

n

n mn m n n nn
h j

n n m n nn n m n n n nn nn

 


 

 

 




   
 

       

 

…………...……(3.2) 

)( 1  is a regular function for 1 .  

Hence, the formula (1.1) after using Eqs. (1.2) and (1.3) with the aid of (3.1), yields 
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( ) ( ) ( ) ( ) ( )K F        
 

   , ………………………………………………………….(3.3) 

where, 

      ( ) ( ) ( ) ( ),       


  ………………………………………………………….….…..(3.4) 

1( ) ( ) ( )[ ( ) ( ) ]F F cK c N         


       , ……………………………….……(3.5)                        

( ) ,
2 (1 )

x y
S iS

N c 
 


  


   ( ) ( ( )) ( ).F f c f t     ………………………………..……..(3.6)           

where, the function ( )F   and its derivatives satisfy Hölder condition. 

To determine ( )  , multiply Eq. (2.3) by 
2 ( )

d

i



  
 where   is any point lies in the region   

and integrating over the circle, we have 

       

     
2

1

1

1 ( ) ( )
( ) [ ( ) ] ( ),

2 ( ) 1 1

j j

j
j

j j

h n cK
K d N n A

i n n

   
   

    




 
   

  
………………………...(3.7) 

where, 

1 ( )
( )

2 ( )

F
A d

i 


 

  
 


 . ……………………………………………………………………..….(3.8) 

The integral terms of Eq. (3.7) is 

2

1

1 ( ) ( )

2 ( ) 1
j j

j
j

h b
d c

i n

   


   


 

 
, ……………………………………………………………(3.9) 

where , 1,2
j

b j   are constants in the complex form. 

Using Eq. (3.9), Eq. (3.7) will be written as 

2
1

1

( ) { [ ( )] } ( ).
1 1

j j

j j
j

j j

h n cK
K cb N n A

n n
  

 





   

 
……………………………………..……..(3.10) 

After differentiating Eq. (3.10) with respect to   and then from Eq. (3.9), we get 

2 2 2
,

j
j j j

j

j j

KE h d E
cb

K h d





 ……………………………………………………………………...……(3.11) 

where, 

2

1 1

2 2 2 2
, ( ) ( ); 1,2.

(1 ) (1 )
j j

j j j j j j

j j

n cK n
d E A n h d N n j

n n
 


    

 
 ……………………………(3.12) 

The second Gaursat function )(  can be determined from Eq. (3.4). 

4. Some applications  

Here, we postulated some different applications for the first and second fundamental BVPs. In 

addition, we represent the stress components by figures in presence ad absence of heat. 



Curr. Sci. Int., 11(2): 199-216, 2022 
EISSN: 2706-7920   ISSN: 2077-4435                                                 DOI: 10.36632/csi/2022.11.2.15 

209 

 

Application 1: Unbounded plate with a curved hole under the effect of uniform tensile stress and flux 

of heat:  

Assume 
21, ; ; 0 2 , 0.

4 2
i

x y

P P
K e S S f   

             

Then, the Gaursat functions become 

2

1

/ 4
( ) ( )

1 1 4

j j

jj

j j

h nP P
c b

n n
 

 


 
    

  
,  ……………………………………………………...(4.1) 

1
2

1 2

1

( )
( ) ( ) ( ),

4 2 ( )
j ji

j
j

j j

h ncP cP
e n

n n


  
      

   



 

 


 
           

 

( ) ( ) .
4

cP
   


  ………………………………………………………………………….....(4.2)   

The Gaursat functions for an unbounded plate with two curvilinear holes C  . The plate will stretch at 

infinity after applying a uniform tensile stress of intensity P , which makes an angle    with the x 

axis. 

For 1 2 1 2n =0.03, n =0.05, m =0, m =0.02, P=0.25,q=0.3, =0.25, 0.7, 0.5p and G    , the 

relationship between the stress components , ,xx yy xy    and the angle   are shown in Figs. (4.1)-

(4.4). 
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Fig. (4.1). the stress functions in presence of 

heat  according to Application 1. 

 

 

 

The maximum value of xx  is 

(2.22, 3.215 & 6.214),   

The minimum value of xx  is 

( 2.47, 0.018 & 3.071),   

The maximum value of yy  is 

(2.22, 3.215 & 6.214),   

The minimum value of yy  is 

( 2.47, 0.018 & 3.071),   

The maximum value of xy  is (0.647, 2.059),   

The minimum value of xy  is 

( 0.645, 1.066 & 4.209).   

 

 

Fig. (4.2). The ratio between the two normal stress  

in presence of heat Θ according to Application 1. 
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Fig. (4.3). the stress functions in absence 

of heat  according to Application 1. 

 

 

The maximum value of xx  is 

(1.035, 1.557 & 4.672),   

The minimum value of xx  is 

( 0.638, 0.619 & 5.648),   

The maximum value of yy  is 

(0.589, 0.6 & 5.648),   

The minimum value of yy  is 

( 1.097, 1.614 & 4.672),   

The maximum value of xy  is (1.928, 2.045),   

The minimum value of xy  is ( 1.928, 4.241).   

 

 

 

Fig. (4.4). The ratio between the two normal 

 stress in absence of heat Θ according to 

 Application 1. 

 

 

Application 2: A curved hole with two poles that is subjected to a constant pressure P : If 
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Thus, Eqs. (4.3)- (4.4) are the first fundamental problem solution for an isotropic unbounded plate 

with the curvilinear hole, in absence of external force and a uniform pressure P is subjected to edges. 

 For 1 2 1 2n =0.03, n =0.05, m =0, m =0.02, P=0.25,q=0.3, =0.25, 0.7, 0.5p and G    , the 

relationship between the stress components , ,xx yy xy    and the angle   are shown in Figs. (4.5) - 

(4.8). 

  

 

Fig. (4.5). the stress functions in presence 

of heat  according to Application 2. 

 

The maximum value of xx  is (8, 3.161& 7.35),   

The minimum value of xx  is ( 6, 0 & 3.161),   

The maximum value of yy  is (8, 3.161& 7.35),   

The minimum value of yy  is ( 6, 0 & 3.161),   

The maximum value of xy  is (3.722, 0.253),   

The minimum value of xy  is ( 3.721, 5.997).   

 

 

Fig. (4.6). The ratio between the two normal stress  

in presence of heat Θ according to Application 2. 
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Fig. (4.7). the stress functions in absence 

of heat  according to Application 2. 

 

 

The maximum value of xx  is (4.227, 0 & 6.25),   

The minimum value of xx  is 

( 3.2, 0.56 & 5.69),   

The maximum value of yy  is 

(4.181, 0.56 & 5.762),   

The minimum value of yy  is 

( 2.359, 0 & 6.268),   

The maximum value of xy  is (7.264, 0.253),   

The minimum value of xy  is ( 7.311, 5.997).   

 

 

 

Fig. (4.8). The ratio between the two normal stress  

in absence of heat Θ according to Application 2. 

 

  

   

                         

Application 3: The external force acts on the curvilinear's middle:                  

When, , 0.k f        Then, 
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When the force acts on the curvilinear kernel, we get the second fundamental boundary problem. The 

stresses will be assumed to vanish at infinity, and it will be clear that there is no rotation with the 

kernel.  

For 1 2 1 2n =0.03, n =0.05, m =0, m =0.02, P=0.25,q=0.3, =0.25, 0.7, 0.5p and G    , the 

relationship between the stress components , ,xx yy xy    and the angle   are obtained in Figs. (4.9)- 

(4.12). 

    

 
Fig. (4.9). the stress functions in presence of heat Θ 

according to Application 3. 

 

The maximum value of xx  is 

(20237, 3.179 & 6.195),   

The minimum value of xx  is 

( 2.212, 0.055 & 3.07),   

The maximum value of yy  is 

(20237, 3.179 & 6.195),   

The minimum value of yy  is 

( 2.212, 0.055 & 3.07),   

xy  is equal to zero. 

 
Fig. (4.10). The ratio between the two normal stress  

in presence of heat Θ according to Application 3. 
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Fig. (4.11). the stress functions in absence of heat Θ 

according to Application 3. 

 

 

The maximum value of xx  is (0.019, 1.219),   

The minimum value of xx  is ( 0.046, 5.145),   

The maximum value of yy  is ( 0.002, 1.122),   

The minimum value of yy  is ( 0.044, 5.648),   

The maximum value of xy  is (0.014, 2.959),   

The minimum value of xy is 

 ( 0.045, 0 & 6.247).   

 

 

Fig. (4.12). The ratio between the two normal stress  

in absence of heat Θ according to Application 3. 

  

 

5. Conclusion 

Here, we will show the important points in the previous discussion 

(i)  Unbounded region was mapped inside the unit circle   by the conformal mapping

( ) , 0z c c   , where ( ) 0,    , for 1  . 

(ii) From boundary value issues, we can obtain the integro-differential equation with discontinuous 

kernel, when the conformal mapping is applied, 0,)(  ccz    . 

(iii) In order to solve the integro-differential equation and extract the functions immediately, the 

Cauchy approach is preferred. 
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(iv)  The components of stress ,xx yy   and xy  can be completely determined, after obtaining 

the two complex functions. 

(v) Positive stress values indicate that stress is in the positive direction, and vice versa, implying 

that stress operates as a compressive force. 
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