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Abstract: In this paper we will study the maximum likelihood estimation (MLE)
for the unknown parameters of the Burr Type-XII model when the data is progressively
type-II censored in presence competing risk data, On the basis of this type of censoring,
we will use the classical methods and the Bayesian method. We will compare the classic
methods, which include the ML and parametric bootstrap methods with the Bayes
method under squared error loss (SEL) function, we propose to apply Markov chain
Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure as will as
to construct the credible intervals. An example of real data is provided for illustration.
Finally, all available methods were compared using Monte Carlo simulation.

Keywords: Burr type XII distribution; Progressive type-II censoring; Competing
risks; Gibbs and Metropolis-Hasting samplers; credible intervals; Bootstrap.

The e¤ects competing risks plays an important role in various �elds in order to quickly reach
results for example prostate cancer. In statistical literature this is known as the analysis of
competing risks model. A lifetime experiment with k = 2 di¤erent risk factors competing
for the failure of the experimental units is considered. The data for such a �competing risks
model�consist of the lifetime of the failed item and an indicator variable which denotes the
cause of failure. For example, the competing risks for a prostate cancer patient may include
prostate cancer itself, heart disease and (all) other causes. The e¤ects of the other competing
risks may play an important role in survival studies on slowly progressing diseases such as
prostate cancer. In engineering applications, the causes or risks may signify either multiple
modes of failure for a complex unit or multiple components or subsystems which comprise an
entire system. Occurrence of a system failure is caused by the earliest onset of any of these
component failures. In this respect, the framework is that of a system with components
connected in a series. Several studies have been carried out under this assumption and
the risks follow di¤erent lifetime distributions, namely the exponential, lognormal, gamma,
Weibull, generalized exponential or exponentiated Weibull; see for example Moeschberger et
al. (2008), Pascual (2010), Cramer and Schmiedt (2011), Sarhan et al. (2010), Sankaran
and Ansa (2008), Sarhan (2007), Alwasel (2009), Kundu and Basu (2000) and Kundu and
Sarhan (2006).
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Censoring occurs when exact lifetimes are known only for a portion of the individuals or
units under study, while for the remainder of the lifetimes information on them is partial.
There are several types of censored tests. The most common censoring schemes are Type-I
(time) censoring, where the life testing experiment will be terminated at a prescribed time T,
and Type-II (failure) censoring, where the life testing experiment will be terminated upon the
r-th (r is pre-�xed) failure. However, the conventional type-I and type-II censoring schemes
do not have the �exibility of allowing removal of units at points other than the terminal
point of the experiment. Because of this lack of �exibility, a more general censoring scheme
called progressive type-II censoring has been introduced.
In this paper, we consider competing risk data under progressively type-II censoring. The

censoring scheme is de�ned as follows: consider an experiment in which n units are placed
on a life testing experiment. At the time of the �rst failure (say X1:m:n) has occurred, R1
units are randomly removed from the remaining n�1 surviving units. Similarly, at the time
of the second failure (say X2:m:n) has occurred, R2 units from the remaining n � 2 � R1
units are randomly removed. The test continues until the m-th failure at which time (say
Xm:m:n) has occurred, all the remaining Rm = n � m � R1 � R2 � � � � � Rm�1 units are
removed. The R;is are �xed prior to the study. We note that prior to the experiment in the
progressive type-II censoring, an integer m < n is determined and the progressive type-II
censoring scheme (R1; R2; � � � ; Rm) with Ri > 0 and

Pm
i=1Ri +m = n is speci�ed. During

the experiment, the i-th failure is observed and immediately after the failure, Ri functioning
items are randomly removed from the test. At the time of each failure, one or more surviving
units may be removed from the study at random. The data from a progressively Type-
II censored sample is as follows: (x1:m:n; �1; R1), (x2:m:n; �2; R2),� � � ,(xm:m:n; �m; Rm), where
x1:m:n < x2:m:n < � � � < xm:m:n denote the m observed failure times, �1,�2; � � � ,�m denote the
causes of failure, and R1,R2,� � � ,Rm denote the number of units removed from the test at the
failure times x1:m:n < x2:m:n < � � � < xm:m:n: Readers may refer to Balakrishnan (2007) and
Balakrishnan and Aggarwala (2000) for extensive reviews of the literature on progressive
censoring. Recently, some work has been done on progressive Type-II censoring scheme,
like, Nie and Gui (2019), Qin and Gui (2020) and Boulkeroua et al. (2022).
The rest of this paper is organized as follows. In Section 2, we describe the formulation

of the model. Estimation of the parameters is given in Section 3. In this section, the ML
estimators of the parameters �; �1 and �2, approximate con�dence intervals and bootstrap
con�dence intervals are presented. We cover Bayes estimates and construction of credible
intervals using the MCMC techniques in Section 4. We provide some simulation results in
order to give an assessment of the performance of the di¤erent estimation methods in Section
5. A real data example is presented in Section 6 for illustration. Finally we conclude the
paper in Section 7.

2 Model assumptions

We assume that there are only two causes of failure. The model studied in the paper satis�es
the following assumptions
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1. We put n independent and identical unites on the life test. The test is terminated
when m � n, m is pre-speci�ed, units failed. There are two independent causes of
failure directed to each unit.

2. The lifetime of unit i is denoted as Xi, i = 1; 2;���; n. The time at which the unit i fails
due to cause j is Xij, j = 1; 2. That is, Xi = minfXi1; Xi2g.

3. The distribution of the random variable Xij is Burr type XII distribution that was �rst
introduced by Burr (1942) with shape parameters � and �j, j = 1; 2 and i = 1; 2;���; n.
That is, the (pdf ) of Xij, j = 1; 2, for each i = 1; 2;���; n, is

fj(x) = ��jx
��1(1 + x�)�(�j+1); x > 0; (� > 0; �j > 0): (1)

Fj(x) = 1� (1 + x�)��j ; x > 0: (2)

The corresponding reliability and failure rate functions of this distribution at some t,
are given, respectively by

Sj(t) = (1 + t
�)��j ; t > 0; (3)

Hj(t) = ��jt
��1(1 + t�)�1; t > 0: (4)

The two-parameter Burr type XII distribution has unimodal or decreasing failure rate
function Equation (4). It is clear that the parameter �j does not a¤ect the shape of
failure rate function Hj(t) and � is the shape parameter. Also, Hj(t) has a unimodal

curve when � > 1; achieving a maximum at x = (��1)1=�
�

; and it has decreasing failure
rate function when � � 1. Thus the shape parametrs �j plays an important role for
the distribution. Its capacity to assume various shapes often permits a good �t when
used to describe biological, clinical or other experimental data.

4. When the �rst failure occurs: (1) we observe two quantities X1:m:n and �1 2 f1; 2g;
(2) R1 of surviving unites are randomly selected and removed. When the i� th failure
occurs, i = 2; 3; � � � ;m�1: (1) we observe two quantities Xi:m:n and �i 2 f1; 2g; (2) Ri
of surviving unites are randomly selected and removed. This experiment terminates
when the m � th failure occurs. When the m � th failure occurs: (1) we observe the
two quantities Xm:m:n and �m 2 f1; 2g; (2) the rest Rm = n�m�

Pm�1
i=1 Ri surviving

units are all removed from the test.

Based on the above assumptions, the available data is a progressively type-II censored sample
which contains the following: (X1:m:n; �1; R1), (X2:m:n; �2; R2),� � � ,(Xm:m:n; �m; Rm), where
X1:m:n < X2:m:n < � � � < Xm:m:n denote the m observed failure times, �1, �2,� � � , �m denote
the causes of failures, and R1, R2,� � � ,Rm denote the number of units removed from the test
at the failure times X1:m:n < X2:m:n < � � � < Xm:m:n. To simplify the notation we will use
henceforth Xi instead of Xi:m:n.
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3 Estimation of the Parameters
In this section, we �rst estimate the parameters � and �j; by considering the maximum
likelihood (ML) methods, and then we compute the observed Fisher information based on the
likelihood equations. These will enable us to develop pivotal quantities based on the limiting
normal distribution, the resulting pivotal quantities can be used to develop approximate
con�dence interval for the parameters. Finally, using the ML estimates, we construct the
parametric bootstrap con�dence intervals.

3.1 Maximum Likelihood Estimation

Based on the observed sample (X1:m:n; �1; R1), (X2:m:n; �2; R2),� � � ,(Xm:m:n; �m; Rm), the like-
lihood function is;

`(x;�; �1; �2) / �m�m1
1 �

m2
2 v(�;x) exp[�(�1 + �2)

mX
i=1

(Ri + 1) log(1 + x
�
i )]; (5)

where

v(�;x) =
mY
i=1

x��1i

(1 + x�i )
: (6)

The log-likelihood function without the additive constant can be written as follows;

L(x;�; �1; �2) = m log�+m1 log �1 +m2 log �2 + (�� 1)
mX
i=1

log(xi)

�
mX
i=1

log(1 + x�i )� (�1 + �2)
mX
i=1

(Ri + 1) log(1 + x
�
i ): (7)

Upon di¤erentiating (7) with respect to �; �1 and �2, and equating each result to zero, three
equations must be simultaneously satis�ed to obtain MLEs of the parameters �; �1 and �2:
Then, we have

@L(x;�; �1; �2)

@�
=
m

�
+

mX
i=1

log(xi)�
mX
i=1

x�i log(xi)

(1 + x�i )
� (�1 + �2)

mX
i=1

(Ri + 1)x
�
i log(xi)

(1 + x�i )
; (8)

@L(x;�; �1; �2)

@�1
=
m1

�1
�

mX
i=1

(Ri + 1) log(1 + x
�
i ); (9)

and
@L(x;�; �1; �2)

@�2
=
m2

�2
�

mX
i=1

(Ri + 1) log(1 + x
�
i ): (10)

The MLEs of �1 and �2, respectively, as

�̂1(�) =
m1

mX
i=1

(Ri + 1) log(1 + x�i )

; (11)
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�̂2(�) =
m2

mX
i=1

(Ri + 1) log(1 + x�i )

: (12)

By substituting (11) and (12) in (8), we get
m

�
+

mX
i=1

log(xi)�
mX
i=1

x�i log(xi)

(1 + x�i )
� m

mX
i=1

(Ri + 1) log(1 + x�i )

mX
i=1

(Ri + 1)x
�
i log(xi)

(1 + x�i )
= 0: (13)

Thus, the MLE �̂ of the parameter � can be obtained by solving the nonlinear likelihood
Equation (13) using, for example, the Newton-Raphson iteration scheme. The corresponding
MLE �̂1 and �̂2 of the parameters �1 and �2 are computed from Equations. (11) and (12):
To obtain a starting value for the root �nding method, we can use the graphical method
presented by Balakrishnan and Kateri (2008). We obtain the pro�le log-likelihood of � by
substituting back �̂1(�) and �̂2(�) in (7) and ignoring the additive constant we obtain the
pro�le log-likelihood of � as

p(�) = m log��m log
"
mX
i=1

(Ri + 1) log(1 + x
�
m)

#
+ �

mX
i=1

log(xi)�
mX
i=1

log(1 + x�i ); (14)

and the MLE of � can be obtained by maximizing (13) with respect to �:

3.2 Approximate con�dence intervals

In this subsection, we derive the asymptotic distribution of MLEs to construct approximate
con�dence intervals for unknown parameters �; �1 and �2. The asymptotic variances and
covariances of the MLEs for parameters are given by elements of the inverse of the Fisher
information matrix de�ne as

Iij = E

�
� @2L

@�i@�j

�
; �1 = �; �2 = �1 and �3 = �2 for i; j = 1; 2; 3: (15)

In order to obtain an approximate con�dence interval, the Fisher information matrix is
replaced by its estimate, the observed information26666664

�@
2L

@�2
� @2L

@�@�1
� @2L

@�@�2

� @2L

@�1@�
�@

2L

@�21
� @2L

@�1@�2

� @2L

@�2@�
� @2L

@�2@�1
�@

2L

@�22

37777775

�1

(�̂;�̂1;�̂2)

=

24 var(�̂) cov(�̂; �̂1) cov(�̂; �̂2)

cov(�̂1; �̂) var(�̂1) cov(�̂1; �̂2)

cov(�̂2; �̂) cov(�̂2; �̂1) var(�̂2)

35 ;

with
@2L

@�2
= �m

�2
� x

�
i log

2(xi)

(1 + x�i )
2
� k(�1 + �2)

mX
i=1

(Ri + 1)x
�
i log

2(xi)

(1 + x�i )
2

; (16)
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@2L

@�@�1
=

@2L

@�1@�
= �k(�1 + �2)

mX
i=1

(Ri + 1)x
�
i log(xi)

(1 + x�i )
2

; (17)

@2L

@�@�2
=

@2L

@�2@�
= �k(�1 + �2)

mX
i=1

(Ri + 1)x
�
i log(xi)

(1 + x�i )
2

; (18)

@2L

@�1@�2
=

@2L

@�2@�1
= 0; (19)

@2L

@�21
= �m1

�21
;

@2L

@�22
= �m1

�22
: (20)

The asymptotic normality of the MLE can be used to compute the approximate con�dence
intervals for parameters �; �1 and �2. Therefore, (1 � 
)100% con�dence intervals for
parameters �; �1 and �2 become�

�̂� Z
=2
p
var(�̂)

�
,
�
�̂1 � Z
=2

q
var(�̂1)

�
and

�
�̂2 � Z
=2

q
var(�̂2)

�
; (21)

where Z
=2 is the percentile of the standard normal distribution with right-tail probability

=2.

3.3 Bootstrap con�dence intervals

In this subsection, we propose to use two con�dence intervals based on the parametric
bootstrap methods: (i) percentile bootstrap method (Boot-p) based on the idea of Efron
(1982). (ii) bootstrap-t method (Boot-t) based on the idea of Hall (1988). The con�dence
intervals of R using both methods are illustrated brie�y in the following steps:

Step 1 From the original data x � x1:m:n; x2:m:n; � � � ; xm:m:n compute the MLE�s of the
parameters: say �̂; �̂1 and �̂2 by solving the equations (11-13).

Step 2 Use �̂; �̂1 and �̂2 in Step 1 to generate a bootstrap sample x� with the same values of
Ri;m; and n ; (i = 1; 2; ::;m) using algorithm presented in Balakrishnan and Sandhu
(1995). For each data point, we assigned the cause of failure as 1 or 2 with probability
(�1=(�1 + �2)) and (�2=(�1 + �2)), respectively..

Step 4 Repeat Steps 2 B times representing
�
'̂
�(1)
l ; '̂

�(2)
l ; � � � ; '̂�(B)l

�
; l = 1; 2; 3: Where

'̂�1 = �̂
�; '̂�2 = �̂

�
1 and '̂

�
3 = �̂

�
2.

Step 5 Arrange
�
'̂
�(1)
l ; '̂

�(2)
l ; � � � ; '̂�(B)l

�
in an ascending order to obtain the bootstrap

sample
�
'̂�l(1); '̂

�
l(2); � � � ; '̂�l(B)

�
.
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I- Percentile bootstrap method (Boot-p)
Let G (x) = P ('̂�l � x) be the (cdf) of '̂�l . De�ne 'lboot�p = G�1(x) for given x: The

approximate bootstrap 100(1� 
)% con�dence interval of 'l are given byh
'lBoot�p(




2
); 'lBoot�p(1�




2
)
i
:

II- Bootstrap-t method (Boot-t)
Compute the following statistic:

T �l =

p
m('̂�l � '̂l)p
V ar('̂�l )

; l = 1; 2; 3;

where V ar('̂�l ) are obtained using the Fisher information matrix. Using T
�
l values, determine

the upper and lower bounds of the 100(1 � 
)% con�dence interval of 'l as follows: let
H(x) = P (T �l � x); l = 1; 2; 3 be the (cdf) of T �l . For a given x, de�ne

'̂lBoot�t(x) = '̂l +m
�1=2

p
V ar('̂l)H

�1(x), for l = 1; 2; 3:

Here also, V ar('̂l) can be computed as same as computing the V ar('̂
�
l ). The approximate

100(1� 
)% con�dence interval of 'l are given by�
'̂lBoot�t(




2
); '̂lBoot�t(1�




2
)
�
, for l = 1; 2; 3:

Hall (1988) showed that the Boot-t con�dence interval is better than the Boot-p con�-
dence interval from an asymptotic point of view.

4 Bayes Estimation of Parameters using MCMC

This section describes Bayesian MCMC methods that have been used to estimate the pa-
rameters �; �1 and �2 based on progressively type-II censored in presence competing risks
from the Burr-XII distribution. The Bayesian approach is introduced and its computational
implementation with MCMC algorithms is described. Gibbs sampling procedure and the
Metropolis-Hastings (M-H) method are used to generate samples from the posterior density
function and in turn compute the Bayes point estimates and also construct the correspond-
ing credible intervals based on the generated posterior samples. For an exhaustive list of
references and further details on the MCMC technique, the readers are referred to the mono-
graph by Robert and Casella (2004), Rezaei et al. (2010), Kundu (2008) and Smith and
Roberrs (1993). For computing the Bayes estimates, we assume mainly a squared error loss
(SEL) function only; however, any other loss function can be easily incorporated.
In some situations where we do not have su¢ cient prior information, we can use non-

informative prior distribution. This is particularly true for our study. For example, the
non-informative uniform prior distribution can be used for parameters �; �1 and �2. The
joint posterior density will then be in proportion to the likelihood function.
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Here we consider the more important case, we assume the following independent prior den-
sities for �; �1 and �2

� � Gamma(a1; b1); �1 � Gamma(a2; b2); and �2 � Gamma(a3; b3); (22)

where (ai; bi); i = 1; 2; 3 are known positive parameters. Noninformative priors follows by
considering a1 = b1 = a2 = b2 = a3 = b3 = 0: Interestingly, in this case the Bayes estimators
coincide with the corresponding MLEs.
The expression for the posterior distribution can be obtained up to proportionality by mul-
tiplying the likelihood with the prior and this can be written as

���;�1;�2(�; �1; �2jx) / �m+a1�1�m1+a2�1
1 �m2+a3�1

2 v(�;x) exp[�b1�] exp[��1b2] exp[��2b3]

� exp[�(�1 + �2)
mX
i=1

(Ri + 1) log(1 + x
�
i )]; (23)

where v(�;x) is de�ned in (6):
The posterior is obviously complicated and no closed form inferences appear possible. We,
therefore, propose to consider MCMC methods, namely the Gibbs sampler, to simulate
samples from the posterior so that sample-based inferences can be easily drawn. From (23),
the full conditional posterior distributions required to implement the MCMC sampler are
given by

���(�j�1; �2; x) / �m+a1�1v(�;x) exp[�b1�] exp[�(�1 + �2)
mX
i=1

(Ri + 1) log(1 + x
�
i )]; (24)

���1(�1j�; �2; x) � Gamma(m1 + a2; b2 +
mX
i=1

(Ri + 1) log(1 + x
�
i )); (25)

and

���2(�2j�; �1; x) � Gamma(m2 + a3; b3 +
mX
i=1

(Ri + 1) log(1 + x
�
i )): (26)

From Equations (25) and (26); it can be seen that samples of �1 and �2 can be easily gen-
erated using any gamma generating routine. However, in our case, the conditional posterior
distribution of � Equation (24) cannot be reduced analytically to well known distributions
and therefore it is not possible to sample directly by standard methods, but the plot of it
show that it is similar to normal distribution. So to generate random numbers from this
distribution, we need to use the M-H method with normal proposal distribution. Thus, we
proceed as follows:

Step 1: Start with an (�(0)) and set t = 1.

Step 2: Generate �(t)1 from Gamma(m1 + a2; b2 +

mX
i=1

(Ri + 1) log(1 + x
�(t�1)
i )):
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Step 3: Generate �(t)2 from Gamma(m2 + a3; b3 +

mX
i=1

(Ri + 1) log(1 + x
�(t�1)
i )):

Step 4: Using Metropolis-Hastings (see, Metropolis et al. (1953)), generate �(t) from
���(�j�

(t)
1 ; �

(t)
2 ; x) with the N(�

(t�1); �2) proposal distribution. Where �2 is from vari-
ance covariance matrix.

Step 5: Compute �(t); �(t)1 and �(t)2 .

Step 6: Set t = t+ 1:

Step 7: Repeat Steps 2� 5 N times.

Step 8: We obtain the Bayes MCMC point estimate of � � (�; �1; �2) as

E(�jdata) = 1

N �M

NX
i=M+1

�(i);

where M is the burn-in period (that is, a number of iterations before the stationary
distribution is achieved).

Step 9: To compute the credible intervals of �, usually, we take the quantiles of the sample
as the endpoints of the interval. Order �(M+1), �(M+2);. . . ,�(N) as �(1), �(2),� � � ,�(N�M).
Then the 100(1� 
)% symmetric credible interval is

�
R(
=2(N�M)); R((1�
=2)(N�M))

�
: (27)

5 Monte Carlo simulations

Here in these calculations, we primarily perform some simulation experiments to observe the
behavior of the di¤erent methods. Monte Carlo simulations were performed utilizing 1000
progressively Type-II censored samples for each simulations. The samples were generated
by using the algorithm described in Balakrishnan and Sandh (1995) using (�; �1; �2) =
(2; 0:6; 0:4), di¤erent sample size n and di¤erent sample size m, For each data point, we
assigned the cause of failure as 1 or 2 with probability (�1=(�1 + �2)) and (�2=(�1 + �2)),
respectively. A simulation was conducted in order to study the properties and compare the
performance of di¤erent methods, namely the maximum likelihood estimator, bootstraps
and Bayes estimator. We consider the following di¤erent sampling schemes:
S
(1)
m:n : The �rst observation removals, i.e. R1 = n�m; Ri = 0 for i 6= 1:
S
(2)
m:n : The middle observation removal, i.e. Rm

2
= n�m; Ri = 0 for i 6= m

2
:

S
(3)
m:n : The last observation removals, i.e. Rm = n�m; Ri = 0 for i 6= m:
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The MLE �̂ of the parameter � is computed from the solution of Equation (13) using
Newton-Raphson iteration. Once we estimate �, we derived �̂1 and �̂2 using Equations (11)
and (12), respectively.
We consider informative prior for the unknown parameters namely as (a1 = 2; b1 = 1;

a2 = 3; b2 = 5; a3 = 2; b3 = 5) for the parameter values. We have chosen the hyper-
parameters in such a way that the prior mean became the expected value of the corresponding
parameter. We compute the average maximum likelihood estimates (AMEs), mean squared
errors (MSEs), average 95% con�dence interval lengths (ACILs) and the corresponding cov-
erage percentages (CPs) of the parameters. In addition to the same previous computations
for Boot_p and Boot_T based on 1000 bootstrap replications,. Also, We compute the aver-
age Bayes estimates (ABEs) with respect to squared error loss function, mean squared errors
(MSEs), average 95% credible interval lengths (ACILs) and the corresponding coverage per-
centages (CPs) of the parameters based on 10000 MCMC samples and discard the �rst 1000
values as �burn-in�. The results are reported in Tables 2 and 3. Based on the results of the
simulation study some of the points are clear from this experiment. Even for some small
sample sizes, we observe the following:

(i) From Tables 2 , as expected for all the methods, when n, m increase then the AMEs
and the MSEs decrease.

(ii) From Tables 2 and 3, it can be seen that the performance of the MLEs is quite close to
that of the Boot-p and Boot-t methods.

(iii) From Tables 3, in most cases the estimated coverage probability is close to the nominal
level of 0:95 based on di¤erent methods.

(iv) Also it can be seen that, in most cases the (MSEs) of the Bayes estimators perform
much better than the MLEs, Boot-p and Boot-t methods.
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Table 2: The AMEs, of parameters and their MSEs for di¤erent
censoring schemes are reported, when � = 2, �1 = 0:6 and �2 = 0:4.
Scheme MLE Boot_p Boot_T Bayes MCMC

� �1 �2 � �1 �2 � �1 �2 � �1 �2
S
(1)
20:50 2.0727 0.6436 0.4237 2.1831 0.6908 0.4575 2.1321 0.6411 0.4129 2.0458 0.6221 0.4128

0.0810 0.0469 0.0178 0.1137 0.0581 0.0254 0.0938 0.0488 0.0193 0.0694 0.0255 0.0097

S
(2)
20:50 2.1474 0.6438 0.3812 2.2294 0.6759 0.4016 2.1645 0.6309 0.3589 2.1422 0.6257 0.3807

0.1852 0.0485 0.0230 0.1971 0.0553 0.0259 0.1880 0.0485 0.0245 0.1497 0.0261 0.0134

S
(3)
20:50 2.1937 0.7180 0.4612 2.3317 0.7572 0.4976 2.2764 0.7099 0.4512 2.1111 0.6497 0.4229

0.2526 0.1481 0.0625 0.3217 0.1093 0.0591 0.3031 0.1368 0.0559 0.1602 0.0423 0.0178

S
(1)
40:50 2.1065 0.6012 0.3938 2.1832 0.6111 0.3992 2.1251 0.5904 0.3809 2.1045 0.5993 0.3934

0.0605 0.0114 0.0137 0.1322 0.0296 0.0135 0.0662 0.0219 0.0126 0.0571 0.0140 0.0101

S
(2)
40:50 2.0505 0.5929 0.4107 2.1206 0.6023 0.4176 2.0814 0.5826 0.3998 2.0419 0.5933 0.4082

0.0701 0.0122 0.0314 0.0907 0.0153 0.0148 0.0686 0.0121 0.0131 0.0692 0.0156 0.0189

S
(3)
40:50 2.0217 0.6182 0.3931 2.0973 0.6297 0.4016 2.0511 0.6099 0.3832 2.0160 0.6143 0.3927

0.0754 0.0221 0.0414 0.0801 0.0147 0.0152 0.0783 0.0119 0.0140 0.0802 0.0166 0.0087

S
(1)
35:70 2.1163 0.6195 0.4345 2.1799 0.6365 0.4447 2.0426 0.6114 0.4213 2.1185 0.6125 0.4277

0.1250 0.0244 0.0117 0.0856 0.0314 0.0143 0.0790 0.0276 0.0128 0.0648 0.0169 0.0094

S
(2)
35:70 2.0152 0.6495 0.4602 2.0834 0.6757 0.4780 2.1468 0.6456 0.4523 2.0032 0.6358 0.4470

0.0731 0.0287 0.0219 0.1513 0.0318 0.0147 0.1309 0.0249 0.0129 0.1144 0.0193 0.0133

S
(3)
35:70 2.0715 0.6248 0.4019 2.1689 0.6577 0.4230 2.1235 0.6218 0.3962 2.0582 0.6167 0.3992

0.1350 0.0294 0.0223 0.1684 0.0351 0.0270 0.1563 0.0290 0.0219 0.1157 0.0194 0.0157

S
(1)
60:70 2.0279 0.5950 0.4131 2.0724 0.6015 0.4182 2.0429 0.5873 0.4051 2.0289 0.595 0.4118

0.0406 0.0112 0.0075 0.0504 0.0116 0.0079 0.0425 0.0113 0.0075 0.0353 0.0090 0.0062

S
(2)
60:70 2.0581 0.6116 0.4054 2.1114 0.6173 0.4092 2.0743 0.6036 0.3956 2.0553 0.6106 0.4049

0.0772 0.0115 0.0095 0.0925 0.0122 0.0102 0.0795 0.0114 0.0095 0.0714 0.0095 0.0080

S
(3)
60:70 2.0423 0.6183 0.4150 2.0911 0.6258 0.4204 2.0576 0.6105 0.4077 2.0411 0.6157 0.4127

0.0809 0.0117 0.0106 0.0930 0.0124 0.0113 0.0830 0.0116 0.0107 0.0761 0.0097 0.0087

Table 3: The 95% ACILs and the corresponding CPs of parameters for di¤erent
censoring schemes are reported, when � = 2, �1 = 0:6 and �2 = 0:4.
Scheme MLE Boot_p Boot_T Bayes MCMC

� �1 �2 � �1 �2 � �1 �2 � �1 �2
S
(1)
20:50 1.3794 0.8125 0.6178 1.4982 0.9263 0.6903 1.4252 0.9478 0.7671 1.3203 0.6855 0.5250

0.964 0.942 0.961 0.961 0.923 0.944 0.925 0.963 0.947 0.962 0.961 0.956

S
(2)
20:50 1.2843 0.7351 0.6158 1.4445 0.8925 0.7327 1.3598 0.8838 0.7601 1.2453 0.6326 0.5265

0.933 0.925 0.941 0.962 0.962 0.953 0.936 0.906 0.943 0.951 0.954 0.935

S
(3)
20:50 1.7227 0.9885 0.8007 1.9511 1.2812 0.9412 1.856 1.2036 0.9874 1.5017 0.6714 0.528

0.906 0.887 0.943 0.833 0.868 0.887 0.962 0.849 0.925 0.943 0.962 0.934

S
(1)
40:50 1.0828 0.5057 0.3937 1.2049 0.5490 0.4133 1.2669 0.5634 0.4236 1.1370 0.4698 0.3686

0.981 0.925 0.906 0.943 0.943 0.925 0.981 0.887 0.906 0.962 0.925 0.943

S
(2)
40:50 1.1888 0.5181 0.4064 1.2218 0.5534 0.4408 1.1445 0.5476 0.4242 1.0596 0.4788 0.3794

0.943 0.925 0.943 0.962 0.925 0.961 0.943 0.906 0.911 0.943 0.962 0.932

S
(3)
40:50 1.2201 0.5176 0.4150 1.2564 0.5669 0.4536 1.1644 0.5546 0.4655 1.0871 0.4783 0.3843

0.925 0.943 0.943 0.943 0.951 0.937 0.925 0.934 0.947 0.925 0.962 0.943

S
(1)
35:70 1.0582 0.5331 0.4358 1.2611 0.5831 0.4674 1.2353 0.6047 0.5039 1.1314 0.5007 0.4093

0.962 0.943 0.943 0.925 0.981 0.925 0.943 0.943 0.906 0.943 0.981 0.962

S
(2)
35:70 1.1164 0.5414 0.4377 1.1326 0.6020 0.4846 1.1088 0.5864 0.4870 1.0102 0.4942 0.4041

0.981 0.925 0.943 0.925 0.943 0.962 0.981 0.943 0.887 0.943 0.962 0.981

S
(3)
35:70 1.1205 0.5424 0.4493 1.3238 0.6311 0.4918 1.1933 0.5549 0.4612 1.1473 0.4967 0.4044

0.962 0.925 0.981 0.906 0.906 0.962 0.943 0.925 0.906 0.925 0.943 0.956

S
(1)
60:70 0.9407 0.4219 0.3324 1.0049 0.4428 0.3454 0.9986 0.4250 0.3462 0.9326 0.4014 0.3178

0.962 0.981 0.981 0.925 0.943 0.983 0.962 0.925 0.962 0.962 0.943 0.981

S
(2)
60:70 0.9294 0.4101 0.3304 1.0032 0.4326 0.3472 0.9648 0.4413 0.3431 0.9065 0.3904 0.3145

0.981 0.967 0.962 0.943 0.966 0.962 0.981 0.981 0.967 0.981 0.973 0.962

S
(3)
60:70 0.9163 0.4059 0.3274 0.9824 0.4308 0.3392 0.9559 0.4332 0.3524 0.8932 0.3891 0.3128

0.925 0.962 0.954 0.962 0.950 0.968 0.943 0.943 0.956 0.943 0.939 0.958
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6 Data Analysis

In this section, we will provide real data, these data were presented by Hoel (1972) and
Cramer and Schmiedt (2011), as well as analyzed by Modhesh and Abd-Elmougod (2015),
and they proved that they follow the Burr XII model before going for more analyzes, the
data was divided by 1000. It was obtained from a laboratory experiment in which male
mice received a radiation dose of 300 roentgens. The cause of death for each mouse was
determined by autopsy. Restricting the analysis to two causes of death, for the purpose
of analysis, we consider reticulum cell sarcoma as cause 1 and combine the other causes of
death as cause 2.
To check the validity of the model, we compute the the Kolmogorov Smirnov (K-S)

statistic whether the Burr XII model is suitable for this data. The maximum likelihood
estimates of � and � based on the two causes of death are (8.1993, 35.6497) and (2.2261,
6.2144), respectively. In deaths due to cause 1 the K-S distance and the associated p-value
are 0.0711 and 0.9907 , respectively, and for the deaths due to cause 2 the corresponding
values are 0.1093 and 0.740. Based on the p-values, the Burr XII model is found to �t the
data well.
Suppose that the pre-determined censoring scheme is given by m = 30 and R1 = R2 =

::: = R5 = 4; R6 = ::: = R15 = 2; R16 = ::: = R22 = 1 R23 = ::: = R30 = 0; then a
progressive type II censored sample of size 30 out of 77 is obtained as (0.040,2), (0.042,2),
(0.051,2), (0.062,2), (0.206,2), (0.222,2), (0.228,2), (0.252,2), (0.259,2), (0.282,2), (0.317,1),
(0.318,1), (0.399,1), (0.407,2), (0.517,2), (0.549,1), (0.552,1), (0.564,2), (0.567,2), (0.594,1),
(0.596,1), (0.619,2), (0.621,2), (0.628,1), (0.631,1), (0.636,1), (0.649,1), (0.686,2), (0.713,1),
(0.763,2). There were m1 = 12 deaths due to cause 1 and m2 = 18 deaths due to cause 2.
Progressive censoring in these kinds of experiments may be invaluable in obtaining informa-
tion on growths of tumors in the mice. At the time of death of a particular mouse, other
mice may be randomly selected and removed from the study. Autopsies on these mice may
lead to information on the progression of the cancer over time.
In light of this result using the progressive type II censored sample of size described

above, we plot the pro�le log-likelihood function (14) in Fig. 1. From the Fig. 1 it is
clear that the pro�le log-likelihood function is unimodal and the MLE of � is close to
2:244. We start the iteration to solve the Equation (13) with � = 2:244. We compute
di¤erent estimates of the parameters �, �1 and �2. ML estimates (:)Ml, estimates using
the bootstrap methods (:)Boot_p and (:)Boot_t based on 10000 bootstrap samples; and Bayes
MCMC estimates (:)B�MCMC using 10000 MCMC samples and discard the �rst 1000 values
as �burn-in�. Also we compute the 95% con�dence intervals and the corresponding lengths
under di¢ rent methods of estimation. The results are given in Table 1.
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Fig. 1: Pro�le log-likelihood function (14).

Table 1: Point estimates, 95% con�dence and credible intervals lengths for the Parameters.

Methods of Estimation Parameters Estimates Interval Length

(:)ML � 2.3756 (1.7279, 3.0234) 1.2955
�1 1.4571 (0.4651, 2.4490) 1.9840
�2 2.1856 (0.8801, 3.4911) 2.6110

Boot_P � 2.4520 (1.9462, 3.1275) 1.1813
�1 1.5903 (0.7433, 2.8924) 2.1492
�2 2.4585 (1.3467, 4.3386) 2.9920

Boot_t � 2.4263 (1.7374, 3.0901) 1.3527
�1 1.4353 (0.1510, 2.2304) 2.0794
�2 2.2397 (0.7396, 3.3101) 2.5704

(:)Bayes_MCMC � 2.3749 (1.7569, 3.0853) 1.3284
�1 1.4811 (0.6628, 2.7838) 2.1210
�2 2.2210 (1.1281, 3.9216) 2.7935

7 Conclusions

In this paper, we have analyzed progressive type-II censored competing risks data. In par-
ticular, we have assumed that the latent failure times under the competing risks follow
independent Burr XII distributions with common the shape parameters. We compared dif-
ferent statistical inference procedures and the performance of the unknown parameters based
on MLE, Boot-p, Boot-t and Bayes methods in this setting. A numerical example has been
presented to illustrate all the methods of inference developed in this paper. We have then
conducted a simulation study to assess the performance of all these procedures.

References

[1] Alwasel, I. A. (2009) Statistical inference of a competing risks model with modi�ed
Weibull distributions. International Journal of Mathematical Analysis, 3 (17-20),905-

114

Curr. Sci. Int., 12(2): 102-116, 2023 
EISSN: 2706-7920   ISSN: 2077-4435                                                 DOI: 10.36632/csi/2023.12.2.11 

918.



[2] Balakrishnan, N. (2007). Progressive censoring methodology. anappraisal. Test, 16, 211�
296 (with discussions).

[3] Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring:Theory, Methods,
and Applications. Birkhauser, Boston, Berlin.

[4] Balakrishnan, N and Kateri, M. (2008). On the maximum likelihood estimation of
parameters of Weibull distribution based on complete and censored data. Statistics and
Probability Letters, 78 , pp. 2971�2975.

[5] Balakrishnan, N, Sandhu, R. A. (1995). A simple simulation algorithm for generating
progressively Type-II censored samples. The American Statistician, 49, 229-230.

[6] Boulkeroua, F. B. Al-Jarallah, R. A. and Raqab, M. Z. (2022), statistical analysis of
Gompertz distribution based on progressively type-II censored competing risk model
with binomial removals, Electronic Journal of Applied Statistical Analysis, 15, Issue 02,
367-398

[7] Burr, I. W. (1942). Cumulative frequency functions. Annals of Mathematical Statistics,
13, 215-232.

[8] Cramer, E and Schmiedt, A. B. (2011) Progressively Type-II censored competing risks
data from Lomax distributions. Computational Statistics and Data Analysis, 55,1285-
1303.

[9] Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. In: CBMS-
NSF Regional Conference Seriesin Applied Mathematics, vol 38, SIAM, Philadelphia,
PA.

[10] Hall, P. (1988). Theoretical comparison of bootstrap con�dence intervals. Annals of
Statistics 16, 927-953.

[11] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57, 97-109.

[12] Hoel, D. G. (1972). A representation of mortality data by competing risks. Biometrics,
28, 475-488.

[13] Kundu, D. (2008). Bayesian Inference and Life Testing Plan for the Weibull Distribution
in Presence of Progressive Censoring. Technometrics, 50, NO. 2, ,144-154.

[14] Kundu, D. and Basu, S. (2000). Analysis of incomplete data in presence of competing
risks, Journal of Statistical Planning and Inference, 87, 221�239.

[15] Kundu D, Sarhan A. M. (2006). Analysis of incomplete data in the presence of competing
risks among several groups. IEEE Transactions on Reliability, 55:262-9.

115

Curr. Sci. Int., 12(2): 102-116, 2023 
EISSN: 2706-7920   ISSN: 2077-4435                                                 DOI: 10.36632/csi/2023.12.2.11 



[16] Moeschberger, M. L. Tordo¤, K. P. and Kochar, N. (2008) A review of statistical analy-
ses for competing risks, in: Epidemiology and Medical Statistics. Vol. 27 of Handbook
of Statist, Elsevier/North-Holland, Amsterdam, 321-341.

[17] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., (1953).
Equations of state calculations by fast computing machines. Journal Chemical Physics,
21, 1087�1091.

[18] Modhesh, A. A. and Abd-Elmougod G. A. (2015). Analysis of Progressive First-Failure-
Censoring for Non-normal Model Using Competing Risks Data. American Journal of
Theoretical and Applied Statistics, 4(6): 610-618.

[19] Nie, J. and Gui, W. (2019). Parameter estimation of Lindley distribution based on
progressive type-II censored competing risks data with binomial removals.Mathematics,
7(7): 646.

[20] Pascual, F. (2010) Accelerated life test planning with independent lognormal competing
risks, Journal of Statistical Planning and Inference, 140 (4), 1089�1100.

[21] Qin, X. and Gui, W. (2020). Statistical inference of Burr-XII distribution under pro-
gressive type-II censored competing risks data with binomial removals. Journal of Com-
putational and Applied Mathematics, 378: 112922.

[22] Rezaei, S., Tahmasbi, R. and Mahmoodi, M. (2010). Estimation of P[Y<X] for gener-
alized Pareto distribution. Journal of Statistical Planning and Inference, 140, 480-494.

[23] Robert, C. P. and Casella G. (2004). Monte Carlo Statistical Methods. Second edition.
Springer : New York.

[24] Sarhan, A. M. (2007) Analysis of incomplete, censored data in competing risks models
with generalized exponential distributions, IEEE Transactions on Reliability, 56, 102-
107.

[25] Sankaran, P. G. and Ansa, A. A. (2008) Bivariate competing risks models under masked
causes of failure, in: Advances in Mathematical Modeling for Reliability, IOS, Amster-
dam, , pp. 72-79.

[26] Sarhan, A. M. , Hamilton, D. C. and Smith, B. (2010) Statistical analysis of competing
risks models. Reliability Engineering and System Safety, 95, 953-962.

[27] Smith, A., and G. Roberrs (1993). Bayesian computation via the Gibbs sampler and
related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society, B
55, pp. 3-23.

116

Curr. Sci. Int., 12(2): 102-116, 2023 
EISSN: 2706-7920   ISSN: 2077-4435                                                 DOI: 10.36632/csi/2023.12.2.11 




