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ABSTRACT 
In this study, marine Streptomyces exfoliatus was isolated from the Red Sea, Egypt, and was 
identified using 16s rRNA. S. exfoliatus was fermented on different media under different carbon 
source concentrations, pH, temperatures, distilled H2O, and sea H2O, under shaking and static 
conditions. The active material was isolated by chloroform and ethyl acetate extractions then 
separated by column chromatography and purified by preparative TLC and identified by GC-MS. 
Methicillin-resistant Staphylococcus aureus inhibited by ß-caryophyllene. 
 
Keywords: Marine, Staphylococcus, Coculture, Secondary metabolites, Streptomyces exfoliatus. 

 
1. Introduction 

Marine oceans, seas, rivers, and lakes cover more than 70 % of the Earth's surface, comprising 
an enormous source of microorganisms that produce promising bioactive secondary metabolites 
(Subramani et al., 2012). The Red Sea represents a unique marine ecosystem having extremophilic 
living conditions, which characterizes by its high microbial diversity in comparison with the other 
tropical seas (Abdelfattah et al., 2016; Blunt et al., 2015). The marine environment has proven to be a 
rich source of diverse microbial products with relevant activities such as anticancer, anti-
inflammatory, antiepileptic, immunomodulatory, antifungal, antiviral, and antiparasitic (Carroll et al., 
2020). 

Staphylococcus aureus can cause a wide range of infections in humans. The most common sites 
affected are skin and soft tissue; manifestations of infections in these sites include folliculitis, 
furuncles, and carbuncles, impetigo, mastitis, wound infections, and staphylococcal scalded skin 
syndrome. More serious infections include bacteremia, pneumonia, endocarditis, bone, and joint 
infections, and toxic shock syndrome. S. aureus can also be responsible for outbreaks of food 
poisoning (Mairi and Touati, 2020). 

Actinomycetes are a rich source of bioactive natural products important for novel drug leads 
(Hun Kim et al., 2021). They are chemically rich sources of structurally diverse secondary 
metabolites. (Kurtböke et al., 2015; Hu et al., 2015; Isik et al., 2014), also economically and 
biotechnologically are the most valuable prokaryotes of medical or economic significance (Kin., 
2006). They are responsible for the production of about half of the discovered bioactive secondary 
metabolites, notably antibiotics (Kurtböke et al., 2015; Antunes, 2014; Usha et al., 2010; Bredholt et 
al., 2011), antitumor compounds (Kurtböke et al., 2015; Usha et al., 2010), immune-suppressive 
agents (Kurtböke et al., 2015) and enzymes (Sharma, 2014). Streptomyces have major diversity and 
proven ability to produce novel bioactive compounds. The produced compounds serve as antifungal, 
antiviral, antitumor, and antihypertensive agents, immunosuppressants, and particularly antibiotics 
(Lekhak et al., 2018; Tian et al., 2017). Their genome carries numerous genes involved in the 
biosynthesis of secondary metabolites, including polyketides and terpenes (Virginia et al., 
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2014). Diverse Streptomyces strain that can inhibit the growth of some pathogenic bacteria. Among 
screened isolates, Streptomyces exfoliatus was the most effective against tested bacterial pathogens 
(Alahadeb, 2022). The co-culture strategy can not only stimulate the accumulation of diverse 
molecules from microorganisms but also significantly increase or decrease the yields of some original 
secondary metabolites compared to monoculture (Vinale et al., 2017). Co-culture strategy simulates 
the complex ecological environment of microbial life by using an ecology-driven method to activate 
silent gene clusters of microorganisms and tap their metabolic potential to obtain novel bioactive 
secondary metabolites. A series of natural products with diverse and novel structures have been 
discovered successfully through co-culture strategies, including fungus–fungus, fungus–bacterium, 
and bacterium-bacterium co-culture approaches (Xiao et al., 2021). Competition between the two 
microbes led to genomic mutations, long-term coculture can activate silent smBGC which stimulates 
the production of silent and poorly expressed metabolites (Reen et al., 2015), by inducing genetic 
mutations, which keep silent under short-term coculture (Charusanti et al., 2012). 
   

2. Materials and Methods 
2.1. Isolation and Identification of Methicillin Resistance of Staphylococcus aureus (MRSA) 

Isolation of methicillin-resistant Staphylococcus aureus (MRSA) from blood, urine, sputum, 
wound and biological fluids supplied El Kasr El Any. Bacteria were cultivated on Mannitol agar 
media, M1 (Luria Bertani), and MacConkey agar media, then it was incubated at 38°С for 24 hrs. 

Bacteria were identified by microscopic examination and biochemical tests. Identification of 
bacterial isolates was performed by VITEK-2 (Biomerieux, France) according to the published 
guidelines of the Clinical Laboratory Standards Institute (CLSI, 2020). The selected MRSA2 was 
identified also by MALDI-TOF.  

Antibiotic susceptibility testing was performed by disc diffusion method according to 
guidelines of the (CLSI, 2020). 
 
2.2. Isolation and Identification of Actinomycetes  

Water was collected at a depth of 5m while the soil was at a depth of 1m from three different 
sites at different times of the year (August 2019, 2020, and January 2020) from the marine Red Sea 
(Hurghada). 

Isolation of actinomycetes was performed by serial dilution and plating method using starch 
casein agar media, starch nitrate agar, ISP 1agar, and M1 agar media. 10 g of the soil sample were 
suspended in 95 ml of sterilized seawater in a conical flask and incubated at 30 °C on a shaker for 24 
hrs. Distilled water (9 ml) was added to each test tube from 1 to 4. The supernatant liquid from 
dissolved soil was added to a sterile test tube as serial dilution 10-1, 10-2, 10-3, and 10-4   and 1 ml of 
spore suspension was incubated in M1 agar media and starch casein agar media at a temperature 
(30°C -37 °C) for 48 hrs. (Ez Eldeen et al., 2020). there is not a big difference in isolation from water 
also serial dilution and was taken 1 ml of diluted samples were on M1 agar media and starch casein 
agar media (prepared once by sea water and other by distilled H2O) were incubated at a temperature 
of 30 °C for 48 hrs. after that subcultures isolates were numbered. Identification of selected 
actinomycetes was performed by 16s rRNA. 
 
2.3. Coculture of Actinomycete -Bacteria 

Screening of 40 actinomycetes isolates for antibacterial activity. Actinomycete-bacterial 
coculture was performed by preparing 0.5 McFarland standard (MCF) suspension from each 
 MRSA isolate, streaking the suspension on M1 (Luria Bertani) Agar plate using a sterile cotton swab 
and leaving the plate to dry for 5 min. A 1cm in diameter Actinomycete disc was collected after 24 
hrs. Actinomycete plate and placed in the center of the petri dish. Three Petri dishes 3X replicates 
were prepared for each MRSA to isolate, with each of 40 Actinomycete isolates, for incubation at two 
different temperatures at 37°C (37°C which is optimum for bacterial growth and 30°C for 
Actinomycetes, while ranging 28°C - 40°C optimum for Actinomycete growth). The etriP  dishes were 
examined after 24 hrs. for both actinomycetes and bacterial growth. 
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2.4. Detection of Actinomycetes potency  
Dual culture plate assays. A plate of M1(Luria Bertani) agar media was incubated with 1ml of 

0.5 McFarland of MRSA bacterial suspension and was spread by a sterile cotton swab. Then was 
inoculated with a 1cm diameter disc of Actinomycetes in the central well of the plate and then 
incubated at 37°С for 24 hrs. and treated with many isolates of actinomycetes until achieved best 
inhibition zone diameter. The largest inhibition zone diameter was detected with S. exfoliatus. 5 discs 
of S. exfoliatus were inoculated together with 1ml of 0.5 McFarland standard MRSA bacterial 
suspension in 500 ml of M1 liquid media for each flask and incubated at 30°С for different incubation 
periods (3-6-9-12) days and other cultivation conditions (carbon source, pH, temperature, shaking and 
stationary) were studied for their effect on the production of the Secondary metabolite to achieve best 
results. The flasks were filtered and supernatants were centrifuged at 10.000 g for 10 min. using ethyl 
acetate and chloroform solvents for extraction. The extracts were dried using a rotary evaporator at 
temperatures of 50°C. The dried extracts were weighed and dissolved in 400 µl of its solvent and 
spotted on pre -coated TLC for different incubation periods.  
 
2.5. Optimization of suitable conditions for maximum antibacterial metabolite production  
I. Optimization of the incubation period.  

The optimization of the incubation period was also carried out by incubating for 3-12 days at 
35°C. The antibacterial activity was monitored every 3 days intervals by the disk diffusion method. 

 
II. Optimization of temperature 

The effect of culture conditions on the production of enhanced antibacterial metabolite 
production was studied on M1(Luria Bertani) against MRSA (Pathogenic bacteria which exhibited 
maximum activity in screening studies). The optimum temperature for the maximum antibacterial 
compound production was investigated on M1. Ten ml bacterial suspension was introduced in 250 ml 
Erlenmeyer flasks containing 100 ml of broth and incubated at different temperatures (28°C and 
40°C) at pH 7. The antibacterial activity was assayed after 3 days by the disk diffusion method. 

 
III. Optimization of pH.  

The impact of pH on antibacterial metabolite production was studied at different pH, ranging 
from 4 to 9 at 40°C and after 3 days. 
 
IV. Optimization of carbon source 

The impact of carbon source on antibacterial metabolite production was studied at different 
concentrations 1X and 2X (10 g and 20 g of starch) at 40°C and after 3 days. 
 
V. Optimization of static and shaking conditions.  
The yield of secondary metabolites and growth was much better under shaking conditions. 
 
VII. Isolation, extraction, and Estimation of the Genomic DNA of the selected Actinomycete 

isolate  
Total genomic DNA was collected from the actinomycete by growing it in M 1 liquid media for 

48 hrs. DNA isolation was performed using I-genomic BYF DNA Mini kit # 17361. The purity of 
isolated DNA was estimated by using gel electrophoresis. 1% of agarose in TBE buffer (10.8g Tris- 
base, 5.5g boric acid, 9.3g EDTA buffer, pH 8) was prepared and let to cool. 4µl of ethidium bromide 
was added to the gel after cooling. 2µl of loading dye (bromophenol blue) and 10µl of DNA were 
loaded in 1% agarose gel and then run at 80 volts for approximately 1 hour. PCR amplification was 
carried out using 16S rRNA primers (forward primer,16S-F 5’-AGAGTTTGATCCTGGCTCAG-
3’and reverse primer, 16S-R 5’- GGTTACCTTGTTACGACTT-3’) and amplification profile consists 
of an initial denaturation at 94˚C for 5 minutes followed by 35 amplification cycles of 94°C for 1.0 
min, 52°C for 1.0 min and 72°C for1.0 min. finally, the final extension is 72°C for 10 mins 
(Moubasher et al., 2013). 
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VIII. Sequencing of PCR product  
Purification of PCR products and sequencing of the PCR products for isolate was performed in 

Sigma, Biotech Research Lab, Egypt.  
 
IX. Preparation of crude extract of S. exfoliatus -bacterial coculture   

The broth media was filtered using filter paper Whatman No.1 to remove actinomycete mycelia 
and then centrifuged at 10,000 g for 10 min to remove the bacteria. The supernatant was transferred to 
a separatory funnel mixed with 2X chloroform 2 times. The funnel was strongly shaken and then left 
to allow partitioning. Ethyl acetate was added and the same process mentioned with chloroform was 
repeated. Chloroform and ethyl acetate extracts were evaporated to dryness under reduced pressure 
using a rotary evaporator at temperatures of 50°C, and then the two extracts were weighed separately. 
This extraction step was repeated with five different MRSA each giving a clear zone on solid agar 
media with replicates. 

 
X. Testing the crude extract against MRSA 

After evaporation of both extracts, they were tested against MRSA2 isolates using the disc 
diffusion method by adding 10µl of each extract on a 0.5 cm in diameter filter paper disc.  

 
XI. Column chromatography for purification compounds 

The Silica gel was suspended in chloroform for the packing of the column. The column was 50 
cm long, with a diameter of 2.8 cm, with center glass at the bottom. A 376 mg ethyl acetate extract 
was dissolved in 3 ml of ethyl acetate and chloroform (1:1) and was passed through the column. A 
gradient solvent system of chloroform-ethyl acetate (2:1, 2:1.5, 1:1) was used. Each Fraction of 10 ml 
was collected. 30 fractions were collected and were tested using a paper disc diffusion method against 
MRSA2. Fraction No.8 was further purified using a preparative TLC, with solvent system ethyl 
acetate: chloroform (1:1), there were 8 bands scraped and were tested again by paper disc assay 
against MRSA2. Bands No.4 and No.6 have antibacterial effects which both showed a clear zone on 
MRSA2. 
 
XII. Determination of MICs (minimum inhibitory concentrations) 

Serial dilution for the most potent purified fraction No. 6 (7.4 mg), dissolved in 400 µl, 1:1ethyl 
acetate chloroform extraction 5 µl,10 µl, 15 µl, 25 µl, and 35 µl. 
 
XIII. Gas chromatography-mass spectroscopy (GC-MS) 

The identification of the chemical composition of the sample was performed by GC-MS 
analysis using a Trace GC1310-ISQ mass spectrometer (Thermo Scientific, Austin, TX, USA) with a 
direct capillary column TG–5MS (30 m x 0.25 mm x 0.25 µm film thickness). Helium was used as a 
carrier gas at a constant flow rate of 1 ml/min. The oven temperature program used was 50- 290°C at 
5°C/min, and the final temperature was held for 2 min. The injector and MS transfer line temperatures 
were kept at 250, and 260°C respectively. The solvent delay was 3 min and diluted samples of 1 µl 
were injected automatically using Autosampler AS1300 coupled with GC in the split mode. The MS 
data were obtained in the scan mode (40–600m/z) and EI mode operating at 70 eV. The ion source 
temperature was set at 200 °C. The components were identified by comparison of their retention times 
and mass spectra with those of WILEY 09 and NIST 11 mass spectral databases.  
 
3. Results  
3.1. Effect of incubation periods on the production of the metabolites by coculture of MRSA and 

S. exfoliatus.  
The results showed that coculture affected the production of metabolites. Secondary metabolites 

production was increased by the effect of coculture of MRSA and S. exfoliatus. As shown in Table 1.  
Results showed that the maximum metabolites yield was achieved with the effect of coculture 

(MRSA 2 + S. exfoliatus) and (MRSA 3 + S. exfoliatus) during incubation periods of 3 days using 
ethyl acetate solvent 21 mg and 18.66 mg respectively, the least amounts of metabolites were 
produced under the effect of coculture (MRSA 5+S.exfoliatus) at incubation day 3 by using 
chloroform solvent MRSA 1, 2,3,4 and S. exfoliatus during incubation periods 3,6 and 9 days. The 
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data have shown that single S. exfoliatus produced the highest amounts of metabolites during 
incubation periods 3- and 6-days using ethyl acetate solvent, also single MRSA 2 and MRSA 3 during 
incubation periods of 6 days using ethyl acetate solvent while MRSA 2, MRSA 4 and MRSA 5 during 
incubation periods of 9 days using ethyl acetate solvent and MRSA 3 during incubation periods of 6 
days using ethyl acetate and chloroform solvents have shown intermediate amounts of metabolites 
produced. In contrast, other single cultures produced the least amount of metabolites during 
incubation periods of 3 days MRSA1 and MRSA 5, during incubation periods of 6 days MRSA 1, 
MRSA2, MRSA4, and MRSA5 and during incubation periods of 9 days MRSA1 and S. exfoliatus. 
 
Table 1: Effect of the incubation periods on metabolites production efficiency by coculture of MRSA 

and Streptomyces exfoliatus(mg). 
 Coculture extraction weight  

(mg) 

Incubation 
period 

Solvent 

MRSA 1 
 + 

Actinomycetes 
 (mg) 

MRSA 2 
 + 

Actinomycetes 

MRSA 3  
+ 

Actinomycetes 

MRSA 4 
+ 

Actinomycetes 

MRSA 5 
+ 

Actinomycetes 

3 Days  
Chloroform 

1.33  ±  
0.0015 

17.3± 
0.00807 

1.33± 
0.0015 

1.67± 
0.0002 

0.029± 
0.0004 

Ethyl 
acetate 

1.67 ± 
0.00523 

21 ± 
0.0002 

18.66± 
0.0002 

3.67± 
0.008 

1.33± 
0.0015 

6 Days  
Chloroform 

1    ± 
0.00 

4.67 ± 
0.005 

1.33± 
0.0015 

2 ± 
0.009 

2.33± 
0.00054 

Ethyl 
acetate 

6.33 ± 
4.445 

1.33 ± 
0.0015 

5.33 ± 
0.0005 

6 ±0 
4.33 ± 
0.0002 

9 Days  
Chloroform 

± 
0 

1.33 ± 
0.0002 

4.67 ± 
0.015 

1 ±0 
1.33 ± 
0.0015 

Ethyl 
acetate 

3.67 ± 
0.0012 

6 ± 
0.000 

1.33± 
0.00027 

5.67 5.67±0 

 
Table 1: Cont. 

Coculture extraction weight (mg) 

Incubation 
period 

Solvent 
Actino  
control 

MRSA1 
control 

MRSA2 
control 

MRSA3 
control 

MRSA4 
control 

MRSA5 
control 

3 Days  
Chloroform 1    ±0 1    ±0 4.8 ±0 1    ±0 2    ±0 1    ±0 

Ethyl acetate 8 ±.0002721 2    ±0 8   ±0 5.5 ±0 4    ±0 3     ±0 

6 Days  
Chloroform 2    ±0 1    ±0 1    ±0 7±.0002 1    ±0 1    ±0 

Ethyl acetate 8    ±0 3    ±0 1   ±0 7   ±0 3    ±0 3    ±0 

9 Days  
Chloroform 1    ±0 1    ±0 1    ±0 4     ±0 1    ±0 1   ±0 

Ethyl acetate 2    ±0 3   ±0 5.7 ±0 1   ±0 5.3 ±0 5   ±0 

 
3.2. Inhibition zone diameters (mm) of coculture (MRSA 1,2,3,4,5 and S. exfoliatus) on MRSA 2 

The optimum incubation period of coculture of MRSA2 and MRSA 3 have the highest 
inhibition activities during the incubation period after 3 days using ethyl acetate solvent producing an 
inhibition zone diameter 14 mm while coculture MRSA4 during the incubation period of 3 days using 
ethyl acetate solvent has an intermediate inhibition activity producing an inhibition zone of 12 mm. 
The coculture of MRSA 3 during an incubation period of 6 days using ethyl acetate and chloroform 
solvents has the least inhibition activities producing an inhibition zone of 10 mm. In the contrast, all 
others haven’t shown any inhibition activities with no inhibition zones. 
 
3.3. Effect of different temperatures (28°C &40°C), carbon source concentrations, and pH of 

coculture (MRSA2 and S. exfoliatus) on the production of secondary metabolites (mg). 
The effect of different temperatures (28°C & 40°C), carbon source concentrations (10 g, 20 g), 

and pH (4, 7, 8, 9) on the production of metabolites concentrations of coculture (MRSA 2+ S. 
exfoliatus). The data have shown that the maximum metabolites yield was achieved with the effect of 
a temperature of 40 °C, pH 9, and 10 g of starch with ethyl acetate solvent 90 mg. In addition, other 
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cocultures produced an intermediate amount at a temperature of 40 °C, pH 8, and 10 g of starch with 
ethyl acetate solvent 32.8 mg and also the temperature of 40 °C, pH 7, and 10 g of starch with the 
same solvent, metabolites concentration was 24.2 mg, and all other conditions produced lesser 
amounts of secondary metabolites.  

 
Table 2: Inhibition zone diameters (mm) of co-culture (MRSA 1, 2, 3, 4, 5 and S. exfoliatus) on 

MRSA2. 
Time & 
Solvents 

             
Organisms 

3 Days 6 Days 9 Days 

Chloroform Ethyl acetate Chloroform Ethyl acetate Chloroform Ethyl acetate 

MRSA 1 -       ±0 -         ±0 -    ±0 -       ±0 -        ±0 -      ±0 

MRSA 2 -        ±0 14      ±0 -     ±0 -       ±0 -       ± 0 -      ±0 

MRSA 3 10      ±0 14      ±0 _     ±0 10     ±0 -        ±0 -      ±0 

MRSA 4 -         ±0 12      ±0 -       ±0 -       ±0 -          ±0 -      ±0 

MRSA 5 -         ±0 -         ±0 -       ±0 -       ±0 -          ±0 -      ±0 

 

  
Fig. 1:  Inhibition zone diameters (mm) of coculture (MRSA 1,2,3,4,5 and S. exfoliatus) on MRSA 2 

during different incubation periods 
 
Table 3: Effect of different temperatures (28°C &40°C), carbon source concentrations, and pH of 

coculture (MRSA2 and S. exfoliatus) on the production of secondary metabolites (mg).     
 Starch conc &            

 
Temperature 

10.0 gm starch/L 

28°C 40°C 

pH CHCl3 Ethyl acetate CHCl3 Ethyl acetate  

4 1 x10-1     ±0 3x10-1  ±1x10-4 2.1      ±0 3.4±5x10-5 

7 1 x10-1      ±0 1x10-1    ±0 4.3 ± 5x10-5 24.2 ±1x10-5 

8 2.2x10-1  ±5x10-5 7.4  ±0  4.5        ±0 32.8   ±0 

9 2.4x10-1 ±5x10-5 6.5   ±2.35x10-3 5.6  ±1x10-4 90    ±0 

Ethyl acetate extraction Chloroform extraction 
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Table 3: Cont. 
Starch conc&            

Temperature 
20.0 gm starch/L 

28°C 40°C 

pH CHCl3 Ethyl acetate CHCl3 Ethyl acetate 

4 1 x10-1    ±0 1 x10-1  ±0 1.1  ±0 2.2  ±1x10-4 

7 2.3   ±1x10-4 2.2  ±1x10-4 2.6 ±1.02x10-4 8.7 ±0 

8 1 x10-1  ±0 2.6±1.x10-4 2.8   ± 0 8.9 ±0 

9 1.2   ±5x10-5 2.9  ±1x10-4 1±0 9.1  ±1x10-4 

 
Fig. 2: Effect of different temperatures (28°C &40°C), carbon source concentrations and pH of 

coculture (MRSA2 and S. exfoliatus) on the production of secondary metabolites (mg). 
 
3.4. Effect of different temperatures (28°C & 40°C), different pH, and carbon source 

concentrations of coculture (MRSA and S. exfoliatus) on inhibition diameters (mm) of 
MRSA 2.  
The effect of coculture metabolites MRSA 2 at optimum conditions (carbon source, pH, 

temperature, shaking) on inhibition zone diameter. Secondary metabolites concentrations of coculture 
(MRSA 2+ S. exfoliatus), and yield of metabolites and their effect on inhibition activities showed that 
the highest inhibition zone at a temperature of 40 °C,  pH 9 and 10 g of starch have shown that 
metabolites of coculture (MRSA 2+ S. exfoliatus) with inhibition zone 80 mm, while the least 
inhibition activity and also the least inhibition zone were at 40 °C, pH 8 and starch concentration 10 g 
with an inhibition zone of 60 mm and all others with no inhibition activities and also no inhibition 
zones using ethyl acetate solvent.   In addition, other cocultures with different conditions produced an 
intermediate amount using the same solvent ethyl acetate, and chloroform with carbon source 10 g of 
starch, 28°C, and pH 8, pH 9 produced intermediate amounts of metabolites 7.4 and 6.5 by using ethyl 
acetate solvent and with 20 g of starch,40°C, pH 4 by using both chloroform and ethyl acetate solvent 
which produced 6.5 g and 9 g gradually.                                     
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Fig. 3: Effect of different temperatures (28°C & 40°C), different pH, and carbon source 
concentrations of coculture (MRSA and S. exfoliatus) on inhibition diameters (mm) of 
MRSA 2. 

  
3.5. Column chromatography for purification of compounds 

After testing the antibacterial effect of each fraction, fraction No. 8 showed an inhibition zone. 
Fraction No.8 was purified using preparative TLC, the solvent system was ethyl acetate: chloroform 
(1:1). Eight bands were separated, scraped and dissolved in ethyl acetate: chloroform (1:1) and then 
tested using a paper disc assay against MRSA2. Bands No.4 and No.6 with concentrations of 0.2 and 
1.85 mg/ml respectively have antibacterial effects which both showed a clear zone on MRSA2. Band 
No.6 was spotted on precoated TLC to confirm it´s a single compound.  
 

 
Fig. 4: Antibacterial effect of purification fraction No. 8 on MRSA 2. 

 
3.6. Determination of MICs (minimum inhibitory concentrations) 

Serial dilutions for the most potent purified fraction No. 6 (7.4 mg), were dissolved in 400 µl, 
1:1ethyl acetate chloroform solvent was 0.0925, 0.185, 0.2775, 0.4625, and 0.6475 mg ̸ ml. 
MIC was 0.4625 mg ̸ ml. 
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3.7. Gas chromatography-mass spectroscopy (GC-MS)  
GC-MS analysis the effective compound was caryophyllene with m/z 204. 
 

 
 

4. Discussion 
Coculture is a promising approach to stimulate novel secondary metabolite production from 

actinomycetes by mimicking an ecological habitat where cryptic smBGCs may be activated. 
Coculture aims to expand the chemical diversity of actinomycetes, by categorizing the cases by the 
type of coculture partner. Current challenges to support the elicitation of novel bioactive compounds 
from actinomycetes (Hun Kim et al., 2021). Cultivation conditions such as incubation period, pH, and 
temperature play a major role in the production of bioactive metabolites (Kiranmayi et al., 2011). 
Changes in the nature and type of nitrogen sources and carbon have been found to affect antibiotic 
biosynthesis in Streptomyces (Barratt and Oliver, 1994; Lounès et al., 1996). Temperature, pH, 
incubation time, carbon, and nitrogen source directly influenced the production of bioactive 
metabolites (Bundale et al., 2015). It has been noticed that secondary metabolite production is often 
stimulated by slowly assimilated complex carbon sources (Bertasso et al., 2004). Optimal production 
has been accomplished by cultivating organisms in media containing slowly utilized nutrient sources 
(Jonsbu et al., 2002; Drew and Demain, 1977). Starch was found to be the best carbon source for 
antibiotic production by several researchers (El-Naggar et al., 2003; Osman et al., 2011). Peptone was 
found to favour the production of antibiotics by other authors too (Praveen et al., 2008; 
Chattopadhyay and Sen,1997). 

Generally, in the most published literature, the optimum pH for the production of antibiotics in 
Streptomyces cultures has been announced to be near neutral (Oskay, 2011; Gogoi et al., 2008; Singh 
et al., 2009). 

From the result table (3) the best incubation period of coculture S. exfoliatus and MRSA 2 was 
produced after 3 days in other studies antimicrobial metabolites production started after 7 days of 
incubation of culture broth and reached its maximum levels after 10 days and there after gradually 
decreased (Ripa et al., 2009) others after 11 days of incubations with a rare actinomycete, others 
maximum production of bioactive metabolite in a synthetic medium was found on the sixth day of 
incubation (Thakur et al., 2009), other was after 5 days of incubation (Arasu et al., 2013), and four 
days of incubations (Kiranmayi et al., 2011), S. exfoliatus MT9 were optimally active at pH 8.0 and 
50 °C, pH 5.0 and 60 °C, pH 9.0 and 70 °C, respectively (Choudhary et al., 2014). The best 
temperature was 40°C other studies the optimum temperature for antimicrobial metabolites 
production was 39°C (Ripa et al., 2009), The best growth and antimicrobial activity at 35°C and 32°C 
(Jacob et al., 2017), with maximum production of bioactive metabolites were found in the culture 
medium at 30°C (Thakur et al., 2009; Arasu et al., 2013; Ameerah et al., 2015), the optimal 
temperature was around 25°C (Xinxuan et al., 2010; Ameerah; et al., 2015), Some of the actinomyces 
having their optimum at 37°C (Haines, 1932; Ameerah et al., 2015). showed this phenomenon at 40° 
C (Haines, 1932), Waksman (1919) gives a characterization of a number of species and states that 
their optimum varies from 25°C to 55° C, the maximum for most species being at 40°C, and the 
minimum below 18-20°C. A slight tendency towards a similar branching was also observed at the 
lower limit of growth. the optimum pH for antimicrobial metabolites production in our study was pH 
9 in other studies maximum growth, as well as increased antimicrobial metabolites, maximum 
production of antimicrobial metabolites was obtained when the culture medium pH was 8 (Ripa et 
al.,2009), others were obtained at pH 7 (Kiranmayi et al.,2011., Xinxuan et al., 2010).  
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A complex source of carbon metabolizable (starch) increased antifungal production by 
Streptomyces sp. TKJ2 (Messis et al., 2014). Also used starch as a carbon source in culture medium 
for improved antifungal production by Streptomyces sp. K03-0132 and Streptomyces nogalater NIIST 
A30 were able to produce an enhanced level of broad-spectrum antibacterial metabolites with starch 
as a carbon source (Jacob et al., 2017). S. exfoliatus MUJA10 strain against Staphylococcus aureus 
ATCC29737 the highest inhibition zone was (51.33 ± 2.15 mm). The MIC value of the ‘MUJA10’ 
metabolite of S. exfoliatus strain against Salmonella typhimurium ATCC25566 and E. coli 0157h7 
ATCC25922 was 0.125 mg/ml. However, Bacillus subtilis had a MIC of 0.625 mg/ml and 
Staphylococcus aureus ATCC29737 had a MIC of 2.5 mg/ml (Alahadeb, 2022). β-Caryophyllene 
(BCP), a natural bicyclic sesquiterpene, is a selective phytocannabinoid agonist of type 2 receptors 
(CB2-R). It isn’t psychogenic due to the absence of an affinity to cannabinoid receptor type 1 (CB1). 
Receptors CB1-R and CB2-R are metabotropic receptors G protein (protein binding GTP)-coupled 
receptors, including in the regulation of neurotransmitters responsible for maintaining an energetic 
balance, in the metabolism, and in the immune response. The aforementioned receptors are bound and 
stimulated by endogenous cannabinoids, derivatives of arachidonic acid, including 2-
arachidonoylglycerol and N-arachidonoyl ethanolamine, better known as anandamide. Both receptors 
are bound by proteins in various pathways, acting as mediators of cellular responses to biological 
molecules (Fabrizio et al., 2019). β-caryophyllene isolated from S. exfoliatus and inhibited MRSA, 
from previous studies β-caryophyllene inhibited Streptococcus mutans biofilm which was donated by 
SFC bio in Korea (Hyun-Jun Yooa et al., 2018) and had antibacterial activity against S. aureus, in 
addition to potentiating the action of norfloxacin against P. aeruginosa, and E. coli which isolated 
from terminal branches of plants collected in Atlantic Forest Areas (Eduardo et al., 2021). β-
caryophyllene isolated from the essential oil had antibacterial activity against S. aureus and anti-
fungal activity. β-Caryophyllene also displayed strong antioxidant effects. Additionally, β-
caryophyllene exhibited selective anti-proliferative effects against colorectal cancer cells (Saad et al., 
2015). 
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