Immunological Effect of Cu$_2$O Nanoparticles on Biomphalaria alexandrina Snail the Intermediate Host of Schistosoma mansoni in Egypt

Fayez M. Shaldoum, Khaleed M. Zayed, Ahmed M. Azzam, Ahmed T. Sharaf El-Din and Fikry M. Abou-Senna

1Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
2Department of Environmental Researches and Medical Malacology, Theodor Bilharz Research Institute, Imbaba P.O. Box 30, Giza, 12411, Egypt.

ABSTRACT

Background: Control of the schistosomiasis is dependent on prevention and breaking the life cycle of the trematode by reducing snail populations in the pond. Nanomaterials have unique properties compared with their larger counterparts, due to small size and hence higher specific surface area of the nanoparticles. Aim: The present study aims to evaluate the effect of cuprous oxide nanoparticles (Cu$_2$O NPs) on enzymatic defense activity of Biomphalaria alexandrina (B. alexandrina) snail and its implications to infection rate and cercarial production of exposed snails to schistosoma mansoni (S. mansoni) miracidia. Methods: The activities of catalase (CAT), Glutathione reduced (GSH), Total antioxidant capacity (TAC) and Nitric oxide (NO) were assayed in hemolymph of (B. alexandrina) snails exposed to acute (48 h) and chronic (7 day) sub lethal concentration (LC$_{25}$:1.13 PPM) of Cu$_2$O NPs using colorimetric method. The infection rate and cercarial production, from these snails, was evaluated using light microscope. Results: Both TAC and CAT have increased significantly while GSH was has not significantly increased in the hemolymph of snails on acute and chronic exposure than control congeners. On the other hand, NO has significantly decreased in these snails. The infection rate of B. alexandrina treated with Cu$_2$ONPs and then exposed to Egyptian strain of S. mansoni miracidia was less than that of control (infected but not treated). This control exhibited a longer life span, duration of cercarial shedding and a higher number of shedded cercariae than snails treated with Cu$_2$ONPs. Conclusions: Exposure to Cu$_2$O NPs has increased the adaptive defense of snails through Cat, TAC and GSH so that the infection rate and cercarial production have decreased. The non-specific defense through NO has decreased in these snails.

Introduction

Egypt is one of the many countries that have suffered greatly under the burden of tropical diseases including schistosomiasis (Hotez et al., 2012). Human infection with Schistosoma mansoni is closely related to the existence of its intermediate snail host of the genus Biomphalaria. Biomphalaria alexandrina is the only snail host in Egypt (Abou-El-Naga et al., 2011). Cu compounds have been used as molluscicide. Nanotechnology is used to modify material at the nano-scale (<100 nm) to create novel properties. Changes in the physicochemical and structural properties of materials caused by the decrease in particle size can lead to new and sometimes unexpected biological effects. Therefore, engineered NPs need to be evaluated in terms of their potential to pose risks to human health and the environment (Handy et al., 2008, 2009). Nano-CuO was highly toxic when compared to the bulk form of CuO, to other metal oxide nanoparticles as well as to carbon nanoparticles and carbon nanotubes in the human alveolar epithelial cell (Karlsson et al., 2008, 2009). Molluscicides mostly have oxidative stress effect on the snails. Oxidative stress occurs in living organisms when the rate of generation of oxygen radicals exceeds the rate of their decomposition (Sies, 1986). Most living organisms depend on ATP generation by oxygen-based metabolism, but one consequence of oxygen dependence is the production of reactive oxygen species (ROS), mainly as byproduct of oxidative metabolism. The mitochondrial electron transport chain and a variety of cellular oxidases are the main sources of ROS generation (Zhang et al., 2005).

The present study aims to evaluate the effect of cuprous oxide nanoparticles (Cu$_2$O NPs) on the non-specific (NO) and specific (CAT, GSH and TAC) immune defense activity of B. alexandrina snail and its implications to infection rate and cercarial production of snails exposed to S. mansoni miracidia.

Materials and Methods

Chemicals:
Cuprous oxide nanoparticles (Cu$_2$O NPs):

Cu$_2$O NPs were prepared with copper sulfate (CuSO$_4$+5H$_2$O, El-Gomhouria Chemical Company, Egypt) as starting material via a simple technique. Exactly 20 mL of NaOH aqueous solution (0.075 mol/L, El-
Gomhouria Chemical Company, Egypt) was added into 10 mL of CuSO₄ aqueous solution (0.5 mol/L) with stirring (pH=10.5). Then, 25 mL of ascorbic acid aqueous solution (0.1 mol/L, Merck Company, Germany) was added drop wise into the above solution with vigorous stirring. After 1 h, a yellow precipitate was obtained (pH = 4–4.5). The particles were separated from the solution by centrifugation at 2000 rpm for 30 min. The product was washed by distilled water and absolute ethanol. The final product was dried in vacuum at 60 ºC for 8 h (Selim et al., 2015).

Characterization of Cu₂O nanoparticles:
Nanoparticles prepared were characterized with the help of multiple techniques such as: scanning electron microscopy (SEM, JEOL JSM-5600) to study the surface morphology of nanoparticles (Fig 1A); size of the resulting nanoparticles was analyzed using transmission electron microscope (TEM, EM 208S Philips, Netherlands) connected to a high resolution imaging system. Samples for TEM studies were prepared by placing drops of nanoparticles solutions on carbon-coated TEM copper grids (Fig 1B) and X-ray fluorescence (XRF) that was performed to learn about the main chemical compositions and elemental analysis of the minerals that are present in nanoparticles. XRF measurements were carried out using the JSX-3222 element analyzer (Fig 1C-D).

![Fig. 1: (A) scanning electron microscopy, (B) transmission electron microscope for cuprous oxide nanoparticles(Cu₂O NPs), (C): XRF of Cu₂O NPs and (D): Particle size distribution of Cu₂O NPs.](image)

Snails:
B. alexandrina snails were obtained from Egyptian laboratory stock at Malacology Department, Theodor Bilharz Institute, Egypt. Snails were maintained, as stock cultures, in a well-prepared snail room, under suitable environmental conditions, in glass aquaria containing dechlorinated tap water in a density of 10 snails / L. The snails were fed on fresh lettuce leaves, supplemented with tetramine (fish food) and chalk, after careful selection on the basis of size and age.
Toxicity test:

The present experiment was carried out by preparing three replicates of gradual concentrations from each stock solution. Ten snails (8-10 mm width) were used in each replicate. The snails were exposed to the tested concentrations (0.16, 0.52, 1.13, 1.53 and 2.29 PPM) for 48 hours, then removed from the experimental concentration, washed with tap water and kept in 1 liter of dechlorinated tap water for next 24 hours for recovery (25±1°C). Unexposed snails (control) were assayed side by side with the treated groups (WHO, 1965 b). Dead snails were recorded as the average of the three replicates. Death of snails was distinguished by immersion of snails in a small amount of 15–20% sodium hydroxide solution (Nolan et al., 1953); if bubbles and blood come out of snail, it is recorded as alive and if not, it is recorded as dead. The effectiveness of these components as a molluscicide has been expressed in terms of LC90 and LC50 according to the procedure of Litchfield and Wilcoxon (1949).

Miracidia:

Schistosoma mansoni ova used in this study were obtained from Schistosome Biological Supply Center (SBSC), Theodor Bilharz Research Institute (TBRI), where, ova were taken from previously infected mice. The ova were allowed to hatch in small amount of dechlorinated water (24°C) for about 15 minutes under a direct light. Then, the hatched miracidia were used in the experimental tests.

Hemolymph:

Snail hemolymph was collected using the techniques described by Michelson (1966). The hemolymph was obtained via a small hole made in the shell into which capillary tube was inserted then it was drawn into tube by capillary suction.

Enzyme assays:

Total Antioxidant Capacity (TAC): The determination of the antioxidative capacity is performed by the reaction of antioxidants in the sample with a defined amount of exogenously provide hydrogen peroxide (H2O2). The antioxidants in the sample eliminate a certain amount of the provided hydrogen peroxide. The residual H2O2 is determined colorimetrically by an enzymatic reaction which involves the conversion of 3,5-dichloro–2–hydroxy benzensulphonate to a colored product (Koracevic, 2001).

Glutathione reduced (GSH): The method based on the reduction of 5,5’ dithiobis (2 - nitrobenzoic acid) (DTNB) with glutathione (GSH) to produce a yellow compound . The reduced chromogen directly proportional to GSH concentration and its absorbance can be measured at 405 nm (Beutler et al., 1963).

Catalase (CAT): The enzyme catalyzes the detoxification of H2O2 produced after the dismutation of O2 notify by SOD. It was assayed according to Lubinksy and Bewley (1979) using 10 mM H2O2. The decrease in absorbance was read at 230 nm and the activity of the enzyme was calculated using an extinction coefficient 25 for the enzyme. a-Glycerophosphate dehydrogenase activity was assayed using d-glyceraldehyde 3-phosphate as substrate (10 mM) and NAD (15 mM) in 0.1 M phosphate buffer, pH 7.0 (Lemaire et al., 1996). The increase in absorbance was measured at 340 nm.

Nitric Oxide (NO) is synthesized in biological system by the enzyme Nitric Oxide Synthase (NOS). NOS is a remarkably complex enzyme which acts on molecular oxygen, arginine, and NADPH to produce NO, citrulline, and NADP⁺. NOS O2 arginine NADPH NO Citrulline NADP NO is produced in trace quantities by neurons, endothelial cells, platelets, and neutrophils in response to homeostatic stimuli. This NO is scavenged rapidly (t½ = 4 seconds) and acts in a paracrine fashion to transducer cellular signals. NO is also produced by other cells (macrophages, fibroblasts, hepatocytes) in micromolar concentrations in response to inflammatory or mitogenic stimuli. The final products of NO in vivo are nitrite (NO2⁻) and nitrate (NO3⁻). The relative proportion of NO2⁻ and NO3⁻ produced from NO is variable. The exogenous source of NO3 ingested in the diet should be considered and cannot be ignored (none-NO origine). Thus, one of the indexes of NO production is the NO2. The Biodiagnostic Nitrite Assay Kit provides an accurate and convenient method for measurement of endogenous nitrite concentration as indicator of nitric oxide production in biological fluids. It depend on the addition of Griess Reagents which convert nitrite into a deep purple azo compound, photometric measurement of the absorbance due to this azo chromophore accurately determines NO2⁻ concentration (Montgomery and Dymock 1961).

Infection and cercarial production:

Snail Exposed to Miracidia:

Three replicates, each of 30 lab-bred B. alexandrina snails’ offspring (4-6 mm in diameter) were exposed to newly hatched miracidia. The number of miracidia used was 10 miracidia / snail. The snails were exposed to miracidia individually in 15x17 mm glass vials with 1.0 ml dechlorinated aerated tap water, under fluorescent light from 20 watt tubes, 30 cm far and temperature 25°C±2°C. On the next day, the exposed snails were transferred to and maintained in standard aquaria previously described.
The experimental snails were randomly divided into two groups. The snails of the first group were exposed for 48 hrs to Cu$_2$O NPs. Infection was carried out by the method described by Watson & Abdel-Azim (1949). The second group was used as control. The experimental snails were kept individually in 500 ml jars and maintained under constant temperature of 25 ± 2°C. A photoperiod of 12 h per day was applied; each snail was supplied daily with one bunch of lettuce (about 15 cm2). Observations were recorded for both control and infected snails.

Examination of exposed snails for cercarial shedding:
Starting from the day 21 post miracidial exposure, the snails were examined individually and repeatedly for cercarial shedding in multi dishes under artificial light for two hours (stimulant period) and 2 ml of dechlorinated tape water/snail. After initial shedding was observed, snails were screened individually twice weekly till the death of snails (Chernin and Dunavan, 1962). The snail's infection rate was calculated at the end of experiment by dividing number of shedding on the number of exposed snails and the survival rate was calculated by dividing the number of snails at first shedding on the total number of exposed snails (Yousif et al., 1996). At the first day of detecting cercariae, positive snails were separated individually in a plastic cups. The produced cercariae/snail were transferred to a small Petri dish by a Pasteur pipette, fixed in Bouin's solution and counted under a stereomicroscope. This examination was repeated weekly. The period between miracidial exposure and the first shedding of cercariae for each snail was considered as the incubation period (prepatent period). The time elapsed from first cercarial shedding till stopping of cercariae production was reported as duration of cercarial shedding.

Statistical analysis:
Data were analyzed applying the Chi Square and T-test, and ratio test to achieve these statistical Tests, Minitab software (MINITAB® Release 14.1) was used.

Results
The current work was carried out to evaluate some immune defense antioxidant enzymes in hemocytes of adult *B. alexandrina* snails that had been acutely and chronically exposed to cuprous oxide nanoparticles (Cu$_2$O NPs), with its implications to infection rate and cercarial production of snails exposed to *S. mansoni* miracidia.

Toxicity test:
This experiment was planned to elucidate the molluscicidal properties of Cu$_2$O NPs against adult *B. alexandrina* snails after 48 hours of exposure followed by another 24 hrs for recovery. Data presented in Table (1) show values of LC$_{90}$, LC$_{50}$ and LC$_{25}$ against *B. alexandrina* snails treated with tested Cu$_2$O NPs (2.29, 1.53 and 1.13ppm respectively).

<table>
<thead>
<tr>
<th>Lethal concentration</th>
<th>LC$_{90}$ Ppm</th>
<th>LC$_{50}$ Ppm</th>
<th>LC$_{25}$ Ppm</th>
<th>LC$_{10}$ Ppm</th>
<th>LC$_{0}$ Ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$_2$O NPs</td>
<td>0.16</td>
<td>0.52</td>
<td>1.13</td>
<td>1.53</td>
<td>2.29</td>
</tr>
</tbody>
</table>

Antioxidant:
The chronic exposure of *B. alexandrina* snail to LC$_{25}$ causing dose of Cu$_2$O NPs showed that, catalase (CAT) and total antioxidant capacity (TAC) has a high significantly increased (22.12± 1.20 and 7.31± 0.39) than control (2.32± 0.20 and 1.29± 0.17 respectively, Table 2 and Fig.2). Glutathione reduced (GSH) has also elevated (10.25± 0.30) than control (9.32± 0.09) but this increase is not significant. While, there was a high significant decrease to Nitric oxide assay (NO, 95.72± 3.80) than control (134.19± 4.00). On the other hand *B. alexandrina* snail that had acutely treated with LC$_{25}$ of Cu$_2$O NPs showed that CAT significantly increased (4.15± 0.50) and TAC high significantly increased (5.74±0.16) than control (2.32± 0.20 and 1.29± 0.17 respectively, Table 2 and Fig.2),GSH has also increased but not significantly (9.88± 0.63) than control (9.32± 0.09). Finally, NO high significantly decreased (64.85± 3.30) than control (134.19± 4.00).

Infection rate and cercarial production:
Effect of LC$_{25}$ (1.13 PPM) of Cu$_2$O NPs on infection rate and cercarial production from *B. alexandrina* exposed to *S. mansoni* miracidia has been studied with particular reference to the control snails (untreated) on the cercarial production. Cercarial production is one of the most important factors constituting the transmission dynamics of schistosomiasis.
Table 2: Effect of acute and chronic exposure to sub-lethal concentration (LC_{25}) of cuprous oxide nanoparticles (Cu_{2}O NPs) on some antioxidants (immune defense) parameters of Biomphalaria alexandrina snail.

<table>
<thead>
<tr>
<th>Antioxidant parameter</th>
<th>Acute exposure (LC\textsubscript{25} 1.13 PPM)</th>
<th>Chronic exposure (LC\textsubscript{25} 1.13 PPM)</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalase assay, CAT (mU/L)</td>
<td>4.15±0.50***</td>
<td>22.12±1.20**</td>
<td>2.32±0.20</td>
</tr>
<tr>
<td>Glutathione reduced, GSH (mg/dl)</td>
<td>9.88±0.63</td>
<td>10.25±0.30</td>
<td>9.32±0.09</td>
</tr>
<tr>
<td>Total antioxidant capacity, TAC (mM/L)</td>
<td>5.74±0.16***</td>
<td>7.31±0.39***</td>
<td>2.32±0.20</td>
</tr>
<tr>
<td>Nitric oxide assay, NO (mM/L)</td>
<td>64.85±3.30***</td>
<td>95.72±3.80***</td>
<td>134.19±4.00</td>
</tr>
</tbody>
</table>

P< 0.05, *P< 0.01 (acute and chronic compared to control), * P< 0.05, ** P< 0.01 (acute compared to chronic)and Data expressed as Mean± Standard Error.

FIG. 2: Effect of acute and chronic exposure to sub-lethal concentration (LC\textsubscript{25}) of cuprous oxide nanoparticles (Cu_{2}O NPs) on some antioxidants (immune defense) parameters of Biomphalaria alexandrina snail.

Survival rate at first shedding and Infection rate:
The survival rate (Table 3) of two snail groups exposed to S. mansoni miracidia (SBSC-TBRI strain), at first cercarial shedding, showed that treated snails exhibited a non-significant decrease (60%) comparing to control (80%, P = 0.091). The decreasing in the infection rate (Table 3) also was not significant between snails treated with Cu_{2}O NPs (75%) and control group (87.5%, P = 0.327).

Table 3: Effect of sub-lethal concentration LC\textsubscript{25} of cuprous oxide nanoparticles (Cu_{2}O NPs) on infection rate and cercarial production from Biomphalaria alexandrina infected with Schistosoma mansoni.

<table>
<thead>
<tr>
<th>B. alexandrina Snails exposed to S. mansoni miracidia</th>
<th>Cu_{2}O NPs</th>
<th>Control</th>
<th>Pvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection rate</td>
<td>75%</td>
<td>87.5%</td>
<td>0.327</td>
</tr>
<tr>
<td>Survival rate at 1st shedding</td>
<td>60%</td>
<td>80%</td>
<td>0.091</td>
</tr>
<tr>
<td>Mean life span of snail at 1st shedding</td>
<td>14.11±2.8</td>
<td>25.14±2.1</td>
<td>0.006**</td>
</tr>
<tr>
<td>Mean duration of shedding</td>
<td>11.25±2.7</td>
<td>20.07±1.9</td>
<td>0.021*</td>
</tr>
<tr>
<td>Duration of cercarial shedding</td>
<td>29 day</td>
<td>33 day</td>
<td>0.611</td>
</tr>
<tr>
<td>Mean no of cercariae/ snail</td>
<td>676.00±275</td>
<td>2324.00±364</td>
<td>0.001***</td>
</tr>
<tr>
<td>Cercarial production range</td>
<td>25-837</td>
<td>56-2390</td>
<td></td>
</tr>
<tr>
<td>Mean no of cercariae/ stimulant</td>
<td>869.14±176</td>
<td>3751.50±868</td>
<td>0.014*</td>
</tr>
<tr>
<td>Mean no of cercariae/ snail/stimulant</td>
<td>264.52±58</td>
<td>516.65±84</td>
<td>0.001***</td>
</tr>
</tbody>
</table>

* P< 0.05, ** P< 0.01, ***P< 0.001 and Data expressed as Mean± Standard Error.

Life span of snails and duration of cercarial shedding:
The mean life span of snail at 1st shedding of cercariae (Table 3) of the B. alexandrina snail treated with Cu_{2}O NPs (14.11±2.8) was high significantly decreased than control group (25.14±2.1, P<0.01). The Mean duration of shedding from the B. alexandrina snail treated with Cu_{2}O NPs (11.25±2.7) was significantly decreased than control group (20.07±1.9, P<0.05).

Duration of cercarial shedding:
In the current study, there was no significantly decrease regarding the duration of cercarial shedding (Table 3) between B. alexandrina snail treated with Cu_{2}O NPs (29 day) and control (33 day).
Number of cercariae per snail and cercarial production Range:

According to the data presented in this work (Table 3), there was a very high significant decrease between the mean numbers of cercariae per snails treated with Cu2O NPs (676.00±275 with Cercarial production Range 25-837) compared to control group (2324.00±364 with Cercarial production Range 56-2390, P<0.001).

Number of cercariae per stimulant:

Results presented in Table (3), showed that the mean number of cercariae per stimulant from B. alexandrina snail treated with LC50 doses of Cu2O NPs was significantly decrease compared to control (869.14±176 and 3751.50±868, respectively, P<0.05).

Number of cercariae per snails per stimulant:

According to the current results, there was a very high significant decrease between the mean numbers of cercariae per snails per stimulant treated with Cu2O NPs (264.52± 58) compared to control group (516.65± 84, P<0.001).

Discussion

Immunity of snails is determined mainly by the activity of circulating hemocytes and plasma factors (Barbosa et al., 2006 a, b). Haemocytes are mobile defence cells producing NO molecules (Bernice Wright et al., 2006) that eliminate pathogens in a nonspecific immune response (Moncada et al., 1991). Recently antioxidant enzymes have been used as biomarkers of pollutants that generate oxidative stress in aquatic animals (Ait Alla et al., 2006; Zapata-Vivenes and Nusetti, 2007; Siwela et al., 2010). The up-regulation of antioxidants’ activity in the snails from the polluted sites could be an adaptive mechanism to prevent the accumulation of toxic reactive oxygen intermediates (Torres et al., 2002; Regoli et al., 2006). In the current investigation CAT, GSH, TAC and NO have been measured to determine the generated oxidative stress (both in-specific and adaptive) in B. alexandrina snails treated with Cu2O NPs.

Oxidative stress occurs in living organisms when the rate of generation of oxygen radicals exceeds the rate of their decomposition (Jiaoqin Liu et al., 2016). Free radicals also are formed by homolytic bond fission, which can be induced by electron transfer to the molecule (reductive fission). It can also generate hydroxyl radical (OH), a free radical of paramount toxicological fission from hydrogen peroxide (Klaassen, 2001). The Fenton reaction, which is catalyzed by transition metal ions, typically Cu (I) or Cr (V), Fe (II) is a major toxicity mechanism for HOOH and its precursor O_2^- as well as transition metals may be one of the major reasons for producing ROS (Klaassen and Segner and Brauneck, 1998). Fenton reaction will not allow the conversion of hydrogen peroxide into water molecule and instead it produces ROS. Superoxide dismutase (SOD) and CAT are two key antioxidant enzymes responsible for elimination of cellular reactive oxygen species (ROS) induced by toxicants, in which SOD firstly disproportionates the highly reactive and potentially toxic superoxide radicals (O_2^-) to hydrogen peroxide (H_2O_2) (Reddy and Sreenivasula, 1997; Kumar et al., 2003). Then H_2O_2 was converted to molecular oxygen and water by CAT catalyzing.

The tendency of CAT activity change was similar to that of SOD and some researchers believed that CAT activity showed a positive relationship with SOD activity (Porte et al., 1991; Wu et al., 2011; Richardson et al., 2008). The present study had focused on CAT due to the disproportionation reaction of O_2 is not the only source of H_2O_2 that could also be generated by amino acids or cytochrome P450 oxidation activated (Livingstone et al.,1992).

CAT is an important component of intracellular and antioxidant defences of organisms (Jamil, 2001). It reduces the H_2O_2 into water and oxygen to prevent oxidative stress and for maintaining cell homeostasis. Many studies have found varying responses of catalase to increased metal concentrations, with some organisms exhibiting increased activity, others exhibiting depressed activity, and still others showing no catalase response at all (Regoli et al., 1998). CAT is regarded as an enzyme presenting a clear and early response to contamination (Radwan et al., 2010b). Under oxidative stress, CAT activity often increases due to up- regulation by ROS (Hermes-Lima, 2004).

In the present study, it is observed that catalase activity was significantly increased in hemolymph of B. alexandrina snails that was acutely treated with Cu2ONPs. CAT high significantly increased in acute compared to chronic treatments and both were higher than control. The obtained results are in agreement with the findings of Almeida et al. (2004), that found the catalase activity was increased in mussels after exposure to lead, also this result was in agreement with the findings of Radwan et al. (2010a, 2010b) and Regoli et al. (2006) the CAT activity was significantly higher in the snails from the polluted sites as compared to the value obtained for the same species from the reference site by 4-fold. However these antioxidant enzymes are sensitive to damage by ROS (Kono and Fridovich, 1982; Goldstone et al., 2006). Therefore, measured activities of these enzymes are a result of two processes, their synthesis and inactivation. Studies in aquatic invertebrates exposed to a variety of...
organic and metal contaminants have shown that antioxidant enzyme responses are transient and variable for different species and chemicals (Livingstone, 2001; Orbea et al., 2002; Barata et al., 2005; Cochon et al., 2007).

Changes in the level of antioxidants have been proposed as biomarker of a contaminant-mediated pro-oxidant challenge in a variety of invertebrates (Regoli et al., 2002). In the present study total antioxidant capacity (TAC) was high significantly increased in the snail treated with Cu2O NPs than control. These data was accordant with Torres et al. (2002) finding who stated that the increase in antioxidant defenses enzymes would be due to enhanced oxygen free radicals production, which could stimulate antioxidant activities to cope with increased oxidative stress and protect the cells from damage. Contrarily, Liesivuori and Savolainen (1991) stated that excess of ROS accumulation leads to a decrease in antioxidant defenses or causes oxidative damage in organisms. From this point of view a sub lethal (LC25) of Cu2O NPs which was used in the current work increased ROS and up regulated TAC that enhanced the adaptive immunereresponses in the snail to protect it from oxidative damage.

The antioxidant responses were different between the organisms. The main differences were found in the content of t-GSH. GSH is the most abundant cellular thiol, being found in the millimolar range in most cells. GSH, in addition to being a necessary cofactor for Glutathione peroxidase (GPx) it plays a central role in maintaining cellular redox status and protecting cells from oxidative injury (Doyotte et al., 1997; Dickinson and Forman, 2002). GSH is one of the most important factors protecting from oxidative attacks by active oxygen species, because GSH acts as a reducing agent and free- radical trapper and is known to be a cofactor substrate and/or GSH-related enzymes (Verma et al., 2007).

Interaction of toxic metals with GSH metabolism is an essential part of the toxic response of many metals (Hultberg et al., 2001). When GSH is depleted by any metal, GSH synthesizing systems start making more GSH from cysteine via the γ-glutamyl cycle. Glutathione is a tripeptide non enzymatic antioxidant with a single cysteine residue and constitutes an important pathway of the antioxidant and detoxification defense. Chemical compounds, such as trace metals, are bio-transformed to a conjugate of GSH. GSH is usually not effectively supplied;

In the current results there was no significant increasing in GSH level from hemolymph of B. alexandrina snails that had acutely or chronically treated with Cu2ONPs than control. These findings are in agreement with Dafre et al. (2004) that indicate no significant changes of total GSH levels in pigmented snails exposed to azinphos-methyl, while in the case of L. variegatus, exposure to the pesticide triggered significant increases in total GSH in all exposed groups. In contrast, other authors have reported decreases in GSH content after acute exposure of fish to azinphos-methyl (Ferrari et al., 2007). Total GSH depletion was also observed in marine bivalves exposed to the organophosphate insecticide fenitrothion (Pena-Llopis et al., 2002), also Radwan et al. (2010a) and Farid et al. (2009) observed that the decrease in GSH concentrations in the digestive gland of E. vermiculata snails might be attributed to the intensification of turnover between reduced and oxidized glutathione under the conditions, which cause increased consumption of this peptide for the synthesis of heavy metal- binding proteins, like metallothioneins. In addition, Chandran et al. (2005) reported that the level of GSH was decreased in the digestive gland in Zn-treated A. fulica snails. Also, Sudama et al. (2013) stated that lead binds with glutathione and decreases GSH level. However, if GSH depletion continues because of chronic metal exposure (Quig, 1998; Hultberg et al., 2001) several enzymes in antioxidant defense systems may protect this imbalance.

NO is an important molecule in innate immune responses. In mollusks NO is produced by haemocytes (Bernice Wright et al., 2006). NO is a highly reactive molecule produced by mammalian, invertebrate, and plant cells. NO is synthesized by the oxidation of L-arginine to L-citrulline, which is catalyzed by the enzyme NO synthase (NOS, Rodeberg et al., 1995). NOS is a conserved enzyme with a great degree of sequence similarity between invertebrates and vertebrates (Matsuo et al., 2008). In mollusks, NOS-like activity has been identified in Mytilus galloprovincialis, L. stagnalis, and B. glabrata defense cells (Hahn et al. 2001; Novas et al. 2004; Wright et al., 2006). The present investigation showed a high significant decreasing in the activity of the NO after acute and chronic treated with Cu2ONPs in hemolymph of B. alexandrina snails compared with their corresponding control. The direct toxicity of NO is enhanced by reacting with superoxide radical-forming peroxynitrite, which is capable of oxidizing cellular structures and causing lipid peroxidation (Weinstein et al., 2000).

NO is a molecular messenger with numerous functions, including regulation of vascular tone, cellular signaling in the brain, and the elimination of pathogens in a nonspecific immune response (Moncada et al., 1991). NO is a key enzyme to catalyze L-arginine and molecular oxygen to generate of NO that plays an important role in sensory and motor systems (Funakoshi et al., 1999), learning and memory (Susswein et al., 2004), neurogenesis (Estrada and Murillo-Carretero, 2005), and autonomic nervous activities (Guo and Longhurst, 2003), as it was stated that the organophosphorus pesticides negatively affect the neurotransmitters in the nervous system of treated organisms (Van Cong et al., 2009). This finding agree with the decreasing in the NO value in snails treated with Cu2ONPs in the current work which plays an important role in resistance to disease and immune regulation in the immune system of aquatic animals.
So in the present study, the disturbances in activities of CAT, GSH, TAC and NO in hemolymph of snails treated with the tested agents could be explained on the hypothesis of cells rupturing and injuries of different snails’ organs, which had suppressive effect on innate immunity and nervous systems, and activate the adaptive immunity system of these snails, that most has implications on infection rate and cercarial production in these snails.

The rate of infection of B. alexandrina snails with their compatible parasites (S. mansoni) reached 90%. Frandsen, (1979) found infection rates of B. alexandrina snails with S. mansoni from Egypt to be about 50-90% and Yousif et al., (1996) exposed B. alexandrina to S. mansoni and recorded 100% infection rates. On the other hand, Reda et al., (1991) found that the infection rate of B. alexandrina increased up to 88.2%. Although the difference was not significant, infection rate in the current work decreased up to 75% in acute treatments with CuONPs compared to control which reached 87.5%. This finding is in accordance with Hariston (1973) who reported that low percentage of natural infection is the rule and it depends upon a complex interaction of different factors. Low infection rate may reflect a small degree of biotic pollution but may also indicate a small proportion of susceptible snails in a population exposed to heavy pollution (Paranense and Correa, 1963).

The present results showed that survival rates of snails at 1st shedding post 48 h of exposure to the tested compounds were significantly less than their corresponding control groups. Similar conclusion was recorded by Massoud et al. (1973) on B. truncatus snails exposed to Bayluscide and infected with S. haematobium. This was also; recorded for B. alexandrina snails post their subjection to the fungicide Topas (Esmail, 2009) and the pesticides Match and Vertimec (Yousif, 2010) after 3 weeks of snail’s exposure to S. mansoni miracidia, However in contrast, Hira and Webbe (1972) found that B. glabrata snails treated with triphenyl lead acetate after 20 days of exposure to S. mansoni miracidia, had a similar mortality rate at 1st shedding as control group.

Abd Allah et al. (1997) reported that infection also decreased survival and growth of snail hosts and infected individuals exposed to heavy metals displayed the greatest mortality. A significant interaction between heavy metal exposure and infection was apparent. Cercarial shedding by infected snails was significantly reduced in the presence of heavy metals and by 6 weeks shedding had ceased at the highest metal concentrations.

This study revealed a marked reduction of infection rates and cercarial production of snails treated with the tested CuONPs in comparison with control group. This was supported by the present records on disturbances in activities of the antioxidant defense enzymes, in the presence of the tested compound. The harmful stress of NPs has raised the snails’ death rates during the prepatent period, reduced their survival and infection rates and shortened duration of cercarial shedding and cercarial production from infected snails.

The present suppressive effect on cercarial production from infected treated snails could be due to the increased antioxidants (adaptive immune response) hence their subsequent developmental stages could be deteriorated leading to decrement in cercarial output and shortening the duration of cercarial shedding from these snails.

These findings are supported by Mahmoud (2006) who worked on the insecticides Regent and Mimic, Esmail (2009) on the fungicide Topas and Yousif (2010) on the pesticides Match and Vertimec against infection of B. alexandrina snails with S. mansoni. Similar observations on infection of B. truncatus with S. haematobium post their exposure to the pesticides Chlorpyrifos and profenofos were recorded (Hashesh and Mohamed, 2011). In addition, reduction in schistosomes cercarial output from infected-treated snails may be resulted from their active defense system. As, it was stated by Ataev and Coustau (1999) and Barbosa et al. (2006 a, b) that the success or failure of B. glabrata infection with trematodes depends on snails’ humoral factors, mainly circulating hemocytes and plasma factors.

From the foregoing data, it is concluded that low concentrations of CuONPs disturb the compatibility of B. alexandrina snails to S. mansoni through alterations of snails’ immunity, nervous and metabolic processes. Although the innate (nonspecific) immunity (as NO) decreased that make the snail easy to be infected by the miracidia and survive less, the adaptive (specific) immunity (as CAT, TAC and GSH) increased, that attack the trematodes’ larvae inside the snail preventing it to produce cercariae. Therefore, introduction of such nanoparticles to snails’ habitats could decrease/or prevent schistosomiasis transmission.

References

Lemaire, P., L. Forlin and D.R. Livingstone, 1996. Responses of hepatic biotransformation and antioxidant enzymes to CYPIA inducers (3-methylicholanthrene, B-naphto’ avone) in sea bass (Dicentrarchus labrax), dab (Limanda limanda) and rainbow trout (Oncorhynchus mykiss). Aquatic toxicology 36: 141-160.

